Skip to main content
Log in

Reusable 3D silver superposed silica SERS substrate based on the Griess reaction for the ratiometric detection of nitrite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

When nitrite is ingested and absorbed by the body, it can be converted into highly toxic nitrosamines (carcinogens, teratogens, and mutagens), posing health risks to the general population. Therefore, it calls for establishing a method for determination of nitrite. In this paper, the glass-SiO2-Ag surface-enhanced Raman scattering (SERS) substrate with a large number of “hot spots” were prepared by two kinds of silane coupling agents. The SERS substrate had high sensitivity and repeatability. Silicon dioxide supported the silver nanoparticles (Ag NPs), which increased surface roughness of the substrate, generated a great quantity of hot spots and enhanced the SERS signal. In the SERS spectrum, the intensity ratio of the two characteristic peaks (1287 cm−1 and 1076 cm−1) had a good linear correlation with the logarithm of the concentration of nitrite, R2 = 0.9652. The recoveries of 50 μM and 100 μM nitrite in three kinds of foods, three kinds of cosmetics and tap water were 90.9–105.3%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li W, Huang S, Wen H, Luo Y, Cheng J, Jia Z, et al. Fluorescent recognition and selective detection of nitrite ions with carbon quantum dots. Anal Bioanal Chem. 2020;412(4):993–1002. https://doi.org/10.1007/s00216-019-02325-9.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Zhao C, Yue G, Yang Z, Wang Y, Rao H, et al. A highly selective chromogenic probe for the detection of nitrite in food samples. Food Chem. 2020;317:126361. https://doi.org/10.1016/j.foodchem.2020.126361.

    Article  CAS  PubMed  Google Scholar 

  3. Tu M, Abbood HA, Zhu Z, Li H, Gao Z. Investigation of the photocatalytic effect of zinc oxide nanoparticles in the presence of nitrite. J Hazard Mater. 2013;244-245:311–21. https://doi.org/10.1016/j.jhazmat.2012.11.048.

    Article  CAS  PubMed  Google Scholar 

  4. Chisvert A, Benedé JL, Peiró M, Pedrón I, Salvador A. Determination of N-nitrosodiethanolamine in cosmetic products by reversed-phase dispersive liquid-liquid microextraction followed by liquid chromatography. Talanta. 2017;166:81–6. https://doi.org/10.1016/j.talanta.2017.01.037.

    Article  CAS  PubMed  Google Scholar 

  5. Lei P, Zhou Y, Zhu R, Wu S, Jiang C, Dong C, et al. Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Microchim Acta. 2020;187(10):572. https://doi.org/10.1007/s00604-020-04545-8.

    Article  CAS  Google Scholar 

  6. Wang J, Diao P, Zhang Q. Dual detection strategy for electrochemical analysis of glucose and nitrite using a partitionally modified electrode. Analyst. 2012;137(1):145–52. https://doi.org/10.1039/C1AN15758B.

    Article  CAS  PubMed  Google Scholar 

  7. Liu L, Du J. Liu W-e, Guo Y, Wu G, qi W et al. enhanced his@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal Bioanal Chem. 2019;411(10):2189–200. https://doi.org/10.1007/s00216-019-01655-y.

    Article  CAS  PubMed  Google Scholar 

  8. Sargazi M, Kaykhaii M. Application of a smartphone based spectrophotometer for rapid in-field determination of nitrite and chlorine in environmental water samples. Spectrochim Acta A. 2020;227:117672. https://doi.org/10.1016/j.saa.2019.117672.

    Article  CAS  Google Scholar 

  9. Murray E, Roche P, Briet M, Moore B, Morrin A, Diamond D, et al. Fully automated, low-cost ion chromatography system for in-situ analysis of nitrite and nitrate in natural waters. Talanta. 2020;216:120955. https://doi.org/10.1016/j.talanta.2020.120955.

    Article  CAS  PubMed  Google Scholar 

  10. Sahoo S, Sahoo PK, Sharma A, Satpati AK. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sensor Actuat B-Chem. 2020;309:127763. https://doi.org/10.1016/j.snb.2020.127763.

    Article  CAS  Google Scholar 

  11. Mašić A, Santos ATL, Etter B, Udert KM, Villez K. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry. Water Res. 2015;85:244–54. https://doi.org/10.1016/j.watres.2015.08.031.

    Article  CAS  PubMed  Google Scholar 

  12. Qin ZL, H. Study on determination of trace nitrite and reaction mechanism by two-wavelength negative absorption-catalytic spectrophotometry. Spectrosc Spect Anal. 2006;1:137–9.

    Google Scholar 

  13. Xiang G, Wang Y, Zhang H, Fan H, Fan L, He L, et al. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples. Food Chem. 2018;260:13–8. https://doi.org/10.1016/j.foodchem.2018.03.150.

    Article  CAS  PubMed  Google Scholar 

  14. Hirata S. Amma, Vijayalekshmi B, Karthikeyan, Sathrugnan et al. determination of nitrite by flow injection spectrophotometry using a home-made flow cell detector. Anal Sci. 2003;19(12):1687–9.

    Article  CAS  Google Scholar 

  15. Cabaleiro N, De La Calle I, Gil S, Pena FJ, Costas M, Bendicho C, et al. Simultaneous ultrasound-assisted emulsification–derivatization as a simple and miniaturized sample preparation method for determination of nitrite in cosmetic samples by microvolume UV–vis spectrophotomety. Talanta. 2010;83(2):386–90. https://doi.org/10.1016/j.talanta.2010.09.053.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas C, Mercier F, Tournayre P, Martin J-L, Berdagué J-L. Effect of nitrite on the odourant volatile fraction of cooked ham. Food Chem. 2013;139(1):432–8. https://doi.org/10.1016/j.foodchem.2013.01.033.

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira IMPLVO, Silva S. Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta. 2008;74(5):1598–602. https://doi.org/10.1016/j.talanta.2007.10.004.

    Article  CAS  PubMed  Google Scholar 

  18. Wang N, Wang RQ, Zhu Y. A novel ion chromatography cycling-column-switching system for the determination of low-level chlorate and nitrite in high salt matrices. J Hazard Mater. 2012;235-236:123–7. https://doi.org/10.1016/j.jhazmat.2012.07.029.

    Article  CAS  PubMed  Google Scholar 

  19. Dumont E, De Bleye C, Sacré P-Y, Netchacovitch L, Hubert P, Ziemons E. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis. 2016;8(10):1077–103. https://doi.org/10.4155/bio-2015-0030.

    Article  CAS  PubMed  Google Scholar 

  20. Lin D, Wang Y, Wang T, Zhu Y, Lin X, Lin Y, et al. Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer. Anal Bioanal Chem. 2020;412(7):1611–8.

    Article  CAS  Google Scholar 

  21. Lu D, Fan M, Cai R, Huang Z, You R, Huang L, et al. Silver nanocube coupling with a nanoporous silver film for dual-molecule recognition based ultrasensitive SERS detection of dopamine. Analyst. 2020;145(8):3009–16. https://doi.org/10.1039/d0an00177e.

    Article  CAS  PubMed  Google Scholar 

  22. Xie L, Lu J, Liu T, Chen G, Liu G, Ren B, et al. Key role of direct adsorption on SERS sensitivity: synergistic effect among target, aggregating agent, and surface with au or Ag colloid as surface-enhanced Raman spectroscopy substrate. J Phys Chem Lett. 2020;11(3):1022–9. https://doi.org/10.1021/acs.jpclett.9b03724.

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, Sanchez-Purra M, Huang H, Wang S, Chen Y, Yu X, et al. Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Sci China Chem. 2017;60(9):1219–29. https://doi.org/10.1007/s11426-017-9088-x.

    Article  CAS  Google Scholar 

  24. Wang S, Zou S, Yang S, Wu H, Jia J, Li Y, et al. HfO2-wrapped slanted Ag nanorods array as a reusable and sensitive SERS substrate for trace analysis of uranyl compounds. Sensor Actuat B-Chem. 2018;265:539–46. https://doi.org/10.1016/j.snb.2018.03.062.

    Article  CAS  Google Scholar 

  25. Zhang Z, Ahn J, Kim J, Wu Z, Qin D. Facet-selective deposition of au and Pt on Ag nanocubes for the fabrication of bifunctional Ag@au–Pt nanocubes and trimetallic nanoboxes. Nanoscale. 2018;10(18):8642–9. https://doi.org/10.1039/C8NR01794H.

    Article  CAS  PubMed  Google Scholar 

  26. Lu Y, Lu D, You R, Liu J, Huang L, Su J et al. Diazotization-Coupling Reaction-Based Determination of Tyrosine in Urine Using Ag Nanocubes by Surface-Enhanced Raman Spectroscopy. Nanomaterials. 2018; 8(6). https://doi.org/10.3390/nano8060400.

  27. Karthick Kannan P, Shankar P, Blackman C, Chung C-H. Recent advances in 2D inorganic Nanomaterials for SERS sensing. Adv Mater. 2019;31(34):1803432. https://doi.org/10.1002/adma.201803432.

    Article  CAS  Google Scholar 

  28. Yang H, Xiang Y, Guo X, Wu Y, Wen Y, Yang H. Diazo-reaction-based SERS substrates for detection of nitrite in saliva. Sensor Actuat B-Chem. 2018;271:118–21. https://doi.org/10.1016/j.snb.2018.05.111.

    Article  CAS  Google Scholar 

  29. Li D, Ma Y, Duan H, Deng W, Li D. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron. 2018;99:389–98. https://doi.org/10.1016/j.bios.2017.08.008.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao J, Lui H, McLean DI, Zeng H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc. 2007;61(11):1225–32. https://doi.org/10.1366/000370207782597003.

    Article  CAS  PubMed  Google Scholar 

  31. Chaikin Y, Kedem O, Raz J, Vaskevich A, Rubinstein I. Stabilization of metal nanoparticle films on glass surfaces using ultrathin silica coating. Anal Chem. 2013;85(21):10022–7. https://doi.org/10.1021/ac402020u.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou L, Wang J-P, Gai L, Li D-J, Li Y-B. An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk. Sensor Actuat B-Chem. 2013;181:65–70. https://doi.org/10.1016/j.snb.2013.02.041.

    Article  CAS  Google Scholar 

  33. Zhang H, Kang S, Wang G, Zhang Y, Zhao H. Fluorescence determination of nitrite in water using prawn-Shell derived nitrogen-doped carbon Nanodots as Fluorophores. ACS Sensors. 2016;1(7):875–81. https://doi.org/10.1021/acssensors.6b00269.

    Article  CAS  Google Scholar 

  34. Wang L, Li B, Zhang L, Zhang L, Zhao H. Fabrication and characterization of a fluorescent sensor based on Rh 6G-functionlized silica nanoparticles for nitrite ion detection. Sensor Actuat B-Chem. 2012;171-172:946–53. https://doi.org/10.1016/j.snb.2012.06.008.

    Article  CAS  Google Scholar 

  35. Ren H-H, Fan Y, Wang B, Yu L-P. Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and water. J Agr Food Chem. 2018;66(33):8851–8. https://doi.org/10.1021/acs.jafc.8b01951.

    Article  CAS  Google Scholar 

  36. Zhang Y, Nie J, Wei H, Xu H, Wang Q, Cong Y, et al. Electrochemical detection of nitrite ions using Ag/cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sensor Actuat B-Chem. 2018;258:1107–16. https://doi.org/10.1016/j.snb.2017.12.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support by the Fujian Provincial Department of Science and Technology guiding project (2020Y0019); Industry-University Cooperation Project of Fujian Provincial Department of Science and Technology (2020 N5006); the National Natural Science Foundation of China (Nos. 61975031, 11874006); Natural Science Foundation of Fujian Province of China (Nos. 2016 J01292, 2018 J01786); Achievement Transformation Project of Fuzhou Science and Technology Bureau (2020-GX-20); Fushimei Agricultural and Rural Maker Space (Minke xing [2019] No. 2); Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Lu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Lu, D., She, Q. et al. Reusable 3D silver superposed silica SERS substrate based on the Griess reaction for the ratiometric detection of nitrite. Anal Bioanal Chem 413, 4751–4761 (2021). https://doi.org/10.1007/s00216-021-03429-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03429-x

Keywords

Navigation