Skip to main content
Log in

Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Bovine lens data is available upon request.

Abbreviations

MALDI:

Matrix-assisted laser desorption/ionisation

IMS:

Imaging mass spectrometry

FT-ICR:

Fourier transform ion cyclotron resonance

SIL:

Stable isotopically labelled

References

  1. Castaing RS, G. J. Optique corpusculaire—premiers essais de microanalyse par emission ionique secondaire. Microsc. 1962;1:395–9.

    CAS  Google Scholar 

  2. Caprioli RM, Farmer TB, Gile J. Molecular imaging of bioloigical samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–60. https://doi.org/10.1021/ac970888i.

    Article  CAS  PubMed  Google Scholar 

  3. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Sci. 2004;306(5695):471–3. https://doi.org/10.1126/science.1104404.

    Article  CAS  Google Scholar 

  4. Seeley EH, Caprioli RM. Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A. 2008;105(47):18126–31. https://doi.org/10.1073/pnas.0801374105.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Woods AS, Jackson SN. Brain tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J. 2006;8(2):E391–5. https://doi.org/10.1007/BF02854910.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Demarais NJ, Donaldson PJ, Grey AC. Age-related spatial differences of human lens UV filters revealed by negative ion mode MALDI imaging mass spectrometry. Exp Eye Res. 2019;184:146–51. https://doi.org/10.1016/j.exer.2019.04.016.

    Article  CAS  PubMed  Google Scholar 

  7. Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem. 2000;72(6):1156–62. https://doi.org/10.1021/ac991131p.

    Article  CAS  PubMed  Google Scholar 

  8. Powers TW, Jones EE, Betesh LR, Romano PR, Gao P, Copland JA, et al. Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem. 2013;85(20):99799–806. https://doi.org/10.1021/ac402108x.

    Article  CAS  Google Scholar 

  9. Comisarow BM, Marshall GA. Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett. 1974;25(2):282–3. https://doi.org/10.1016/0009-2614(74)89137-2.

    Article  CAS  Google Scholar 

  10. Kanu AB, Dwivedi P, Tam M, Matz L Jr. HHH. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43(1):1–22. https://doi.org/10.1002/jms.1383.

    Article  CAS  PubMed  Google Scholar 

  11. Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. Trapped ion mobility spectrometry: a short review. Int J Mass Spectrom. 2018;425:22–35. https://doi.org/10.1016/j.ijms.2018.01.006.

    Article  CAS  Google Scholar 

  12. Benson S, Fernandez A, Barth ND, Moliner FD, Horrocks MH, Herrington CS, et al. SCOTfluors: small, conjugatable, orthogonal, and tunable fluorophores for in vivo imaging of cell metabolism. Angew Chem Int Ed. 2019;58(21):6911–5. https://doi.org/10.1002/anie.201900465.

    Article  CAS  Google Scholar 

  13. Long R, Zhang L, Shi L, Shen Y, Hu F, Zeng C, et al. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering. Chem Commun. 2018;54:152. https://doi.org/10.1039/c7cc08217g.

    Article  CAS  Google Scholar 

  14. McEwen A, Henson C. Quantitative whole-body autoradiography: past, present and future. Bioanal. 2015;7(5):557–68. https://doi.org/10.4155/bio.15.9.

    Article  CAS  Google Scholar 

  15. Bottomley PA, Charles HC, Roemer PB, Flamig D, Engeseth H, Edelstein WA, et al. Human in vivo phosphate metabolite imaging with 31P NMR. Magn Reson Med. 1988;7(3):319–36. https://doi.org/10.1002/mrm.1910070309.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Gu Y, Yu XJ QIiM, Surgery. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: a methodology review. 2017. 2017;7(6):707–26.

  17. Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – a tutorial review. Biochim Biophys Acta. 2017;1865(7):726–39. https://doi.org/10.1016/j.bbapap.2016.12.011.

    Article  CAS  Google Scholar 

  18. Taylor AJ, Dexter A, Bunch J. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal Chem. 2018;90(9):5637–45. https://doi.org/10.1021/acs.analchem.7b05005.

    Article  CAS  PubMed  Google Scholar 

  19. Louie KB, Bowen BP, McAlhany S, Huang Y, Price JC, Mao J-h, et al. Mass spectrometry imaging for in situ kinetic histochemistry. Scientific reports. 2013;3:1656. https://doi.org/10.1038/srep01656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang H, Goulbourne CN, Tatar A, Turlo K, Wu D, Beigneux AP, et al. High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis. J Lipid Res. 2014;55(10):2156–66. https://doi.org/10.1194/jlr.M053363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genom. 2008;7(5):355–70. https://doi.org/10.1093/bfgp/eln041.

    Article  CAS  Google Scholar 

  22. O'Rourke MB, Djordjevic SP, Padula MP. The quest for improved reproducibility in MALDI mass spectrometry. Mass Spectrom Rev. 2018;37(2):217–28. https://doi.org/10.1002/mas.21515.

    Article  CAS  PubMed  Google Scholar 

  23. Prideaux B, Lenaerts A, Dartois V. Imaging and spatially resolved quantification of drug distribution in tissues by mass spectrometry. Curr Opin Chem Bio. 2018;44:93–100. https://doi.org/10.1016/j.cbpa.2018.05.007.

    Article  CAS  Google Scholar 

  24. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90(1):240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  CAS  PubMed  Google Scholar 

  25. Wang P, Giese RW. Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr A. 2017;1486:35–41. https://doi.org/10.1016/j.chroma.2017.01.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McDonnell LA, Heeren RMA. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26(4):606–43. https://doi.org/10.1002/mas.20124.

    Article  CAS  PubMed  Google Scholar 

  27. Cornett DS, Frappier SL, Caprioli RM. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem. 2008;80(14):5648–53. https://doi.org/10.1021/ac800617s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugiura Y, Zaima N, Setou M, Ito S, Yao I. Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry. Anal Bioanal Chem. 2012;403(7):1851–61. https://doi.org/10.1007/s00216-012-5988-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye H, Wang J, Greer T, Strupat K, Li L. Visualizing neurotransmitters and metabolites in the central nervous system by high resolution and high accuracy mass spectrometric imaging. ACS Chem Neurosci. 2013;4(7):1049–56. https://doi.org/10.1021/cn400065k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Persike M, Karas M. Rapid simultaneous quantitative determination of different small pharmaceutical drugs using a conventional matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system. Rapid Commun Mass Spectrom. 2009;23(22):3555–62. https://doi.org/10.1002/rcm.4283.

    Article  CAS  PubMed  Google Scholar 

  31. Shariatgorji M, Nilsson A, Goodwin RJ, Svenningsson P, Schintu N, Banka Z, et al. Deuterated matrix-assisted laser desorption ionization matrix uncovers masked mass spectrometry imaging signals of small molecules. Anal Chem. 2012;84(16):7152–7. https://doi.org/10.1021/ac301498m.

    Article  CAS  PubMed  Google Scholar 

  32. Shariatgorji M, Nilsson A, Goodwin Richard JA, Källback P, Schintu N, Zhang X, et al. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron. 2014;84(4):697–707. https://doi.org/10.1016/j.neuron.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  33. Mirabelli MF, Zenobi R. Observing proton transfer reactions inside the MALDI plume: experimental and theoretical insight into MALDI gas-phase reactions. J Am Soc Mass Spectrom. 2017;28(8):1676–86. https://doi.org/10.1007/s13361-017-1677-0.

    Article  CAS  PubMed  Google Scholar 

  34. Källback P, Shariatgorji M, Nilsson A, Andrén PE. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteome. 2012;75(16):4941–51. https://doi.org/10.1016/j.jprot.2012.07.034.

    Article  CAS  Google Scholar 

  35. Pirman DA, Kiss A, Heeren RMA, Yost RA. Identifying tissue-specific signal variation in MALDI mass spectrometric imaging by use of an internal standard. Anal Chem. 2013;85(2):1090–6. https://doi.org/10.1021/ac3029618.

    Article  CAS  PubMed  Google Scholar 

  36. Chumbley CW, Reyzer ML, Allen JL, Marriner GA, Via LE, Barry CE, et al. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal Chem. 2016;88(4):2392–8. https://doi.org/10.1021/acs.analchem.5b04409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barry JA, Ait-Belkacem R, Hardesty WM, Benakli L, Andonian C, Licea-Perez H, et al. Multicenter validation study of quantitative imaging mass spectrometry. Anal Chem. 2019;91(9):6266–74. https://doi.org/10.1021/acs.analchem.9b01016.

    Article  CAS  PubMed  Google Scholar 

  38. Kang M-J, Tholey A, Heinzle E. Application of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the measurement of enzyme activities. Rapid Commun Mass Spectrom. 2001;15(15):1327–33. https://doi.org/10.1002/rcm.376.

    Article  CAS  PubMed  Google Scholar 

  39. Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Direct quantitative analysis of peptides using matrix assisted laser desorption ionization. Fresenius J Anal Chem. 1996;354(4):455–63. https://doi.org/10.1007/s0021663540455.

    Article  CAS  Google Scholar 

  40. Yao J, Scott JR, Young MK, Wilkins CL. Importance of matrix:analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization-fourier transform mass spectrometry and matrix-assisted laser desorption/ionization-time of flight. J Am Soc Mass Spectrom. 1998;9(8):805–13. https://doi.org/10.1016/S1044-0305(98)00046-4.

    Article  CAS  PubMed  Google Scholar 

  41. Sleno L, Volmer DA. Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(14):1928–36. https://doi.org/10.1002/rcm.2006.

    Article  CAS  PubMed  Google Scholar 

  42. Sleno L, Volmer DA. Assessing the properties of internal standards for quantitative matrix-assisted laser desorption/ionization mass spectrometry of small molecules. Rapid Commun Mass Spectrom. 2006;20(10):1517–24. https://doi.org/10.1002/rcm.2498.

    Article  CAS  PubMed  Google Scholar 

  43. Szájli E, Fehér T, Medzihradszky KF. Investigating the quantitative nature of MALDI-TOF MS. Mol Cell Proteomics. 2008;7(12):2410–8. https://doi.org/10.1074/mcp.M800108-MCP200.

    Article  CAS  PubMed  Google Scholar 

  44. Jadoul L, Longuespée R, Noël A, De Pauw E. A spiked tissue-based approach for quantification of phosphatidylcholines in brain section by MALDI mass spectrometry imaging. Anal Bioanal Chem. 2015;407(8):2095–106. https://doi.org/10.1007/s00216-014-8232-7.

    Article  CAS  PubMed  Google Scholar 

  45. Krafft C, Sobottka SB, Schackert G, Salzer R. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Anal. 2005;130(7):1070–7. https://doi.org/10.1039/B419232J.

    Article  CAS  Google Scholar 

  46. Dreissig I, Machill S, Salzer R, Krafft C. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochim Acta A. 2009;71(5):2069–75. https://doi.org/10.1016/j.saa.2008.08.008.

    Article  CAS  Google Scholar 

  47. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3(31). https://doi.org/10.3389/neuro.09.031.2009.

  48. Pirman DA, Yost RA. Quantitative tandem mass spectrometric imaging of endogenous acetyl-l-carnitine from piglet brain tissue using an internal standard. Anal Chem. 2011;83(22):8575–81. https://doi.org/10.1021/ac201949b.

    Article  CAS  PubMed  Google Scholar 

  49. Pirman DA, Reich RF, Kiss A, Heeren RMA, Yost RA. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem. 2013;85(2):1081–9. https://doi.org/10.1021/ac302960j.

    Article  CAS  PubMed  Google Scholar 

  50. Clemis EJ, Smith DS, Camenzind AG, Danell RM, Parker CE, Borchers CH. Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem. 2012;84(8):3514–22. https://doi.org/10.1021/ac202875d.

    Article  CAS  PubMed  Google Scholar 

  51. Takai N, Tanaka Y, Saji H. Quantification of small molecule drugs in biological tissue sections by imaging mass spectrometry using surrogate tissue-based calibration standards. Mass Spectrom. 2014;3(1):A0025-A. https://doi.org/10.5702/massspectrometry.A0025.

  52. Buck A, Halbritter S, Späth C, Feuchtinger A, Aichler M, Zitzelsberger H, et al. Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Anal Bioanal Chem. 2015;407(8):2107–16. https://doi.org/10.1007/s00216-014-8237-2.

    Article  CAS  PubMed  Google Scholar 

  53. Prentice BM, Chumbley CW, Caprioli RM. Absolute quantification of rifampicin by MALDI imaging mass spectrometry using multiple TOF/TOF events in a single laser shot. J Am Soc Mass Spectrom. 2017;28(1):136–44. https://doi.org/10.1007/s13361-016-1501-2.

    Article  CAS  PubMed  Google Scholar 

  54. Ito T, Hiramoto M. Use of mTRAQ derivatization reagents on tissues for imaging neurotransmitters by MALDI imaging mass spectrometry: the triple spray method. Anal Bioanal Chem. 2019;411(26):6847–56. https://doi.org/10.1007/s00216-019-02052-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Porta T, Grivet C, Kraemer T, Varesio E, Hopfgartner G. Single hair cocaine consumption monitoring by mass spectrometric imaging. Anal Chem. 2011;83(11):4266–72. https://doi.org/10.1021/ac200610c.

    Article  CAS  PubMed  Google Scholar 

  56. Nakanishi T, Takai S, Jin D, Takubo T. Quantification of Candesartan in mouse plasma by MALDI-TOFMS and in tissue sections by MALDI-imaging using the stable-isotope dilution technique. Mass Spectrom. 2013;2(1):A0021-A. https://doi.org/10.5702/massspectrometry.A0021.

  57. Schulz S, Gerhardt D, Meyer B, Seegel M, Schubach B, Hopf C, et al. DMSO-enhanced MALDI MS imaging with normalization against a deuterated standard for relative quantification of dasatinib in serial mouse pharmacology studies. Anal Bioanal Chem. 2013;405(29):9467–76. https://doi.org/10.1007/s00216-013-7393-0.

    Article  CAS  PubMed  Google Scholar 

  58. Lagarrigue M, Lavigne R, Tabet E, Genet V, Thomé J-P, Rondel K, et al. Localization and in situ absolute quantification of chlordecone in the mouse liver by MALDI imaging. Anal Chem. 2014;86(12):5775–83. https://doi.org/10.1021/ac500313s.

    Article  CAS  PubMed  Google Scholar 

  59. Poetzsch M, Steuer AE, Roemmelt AT, Baumgartner MR, Kraemer T. Single hair analysis of small molecules using MALDI-triple quadrupole MS imaging and LC-MS/MS: investigations on opportunities and pitfalls. Anal Chem. 2014;86(23):11758–65. https://doi.org/10.1021/ac503193w.

    Article  CAS  PubMed  Google Scholar 

  60. Quiason CM, Shahidi-Latham SK. Imaging MALDI MS of dosed brain tissues utilizing an alternative analyte pre-extraction approach. J Am Soc Mass Spectrom. 2015;26(6):967–73. https://doi.org/10.1007/s13361-015-1132-z.

    Article  CAS  PubMed  Google Scholar 

  61. Reich RF, Cudzilo K, Levisky JA, Yost RA. Quantitative MALDI-MSn analysis of cocaine in the autopsied brain of a human cocaine user employing a wide isolation window and internal standards. J Am Soc Mass Spectrom. 2010;21(4):564–71. https://doi.org/10.1016/j.jasms.2009.12.014.

    Article  CAS  PubMed  Google Scholar 

  62. Goodwin RJA, Scullion P, MacIntyre L, Watson DG, Pitt AR. Use of a solvent-free dry matrix coating for quantitative matrix-assisted laser desorption ionization imaging of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate in rat brain and quantitative analysis of the drug from laser microdissected tissue regions. Anal Chem. 2010;82(9):3868–73. https://doi.org/10.1021/ac100398y.

    Article  CAS  PubMed  Google Scholar 

  63. O'Rourke MB, Djordjevic SP, Padula MP. A non-instrument-based method for the analysis of formalin-fixed paraffin-embedded human spinal cord via matrix-assisted laser desorption/ionisation imaging mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(19):1836–40. https://doi.org/10.1002/rcm.7283.

    Article  CAS  PubMed  Google Scholar 

  64. Puolitaival SM, Burnum KE, Cornett DS, Caprioli RM. Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom. 2008;19(6):882–6. https://doi.org/10.1016/j.jasms.2008.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boughton BA, Thomas ORB, Demarais NJ, Trede D, Swearer SE, Grey AC. Detection of small molecule concentration gradients in ocular tissues and humours. J Mass Spectrom. 2020;55(4):e4460. https://doi.org/10.1002/jms.4460.

    Article  CAS  PubMed  Google Scholar 

  66. Porta T, Lesur A, Varesio E, Hopfgartner G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging? Anal Bioanal Chem. 2015;407(8):2177–87. https://doi.org/10.1007/s00216-014-8315-5.

    Article  CAS  PubMed  Google Scholar 

  67. Nilsson A, Forngren B, Bjurström S, Goodwin RJA, Basmaci E, Gustafsson I, et al. In situ mass spectrometry imaging and ex vivo characterization of renal crystalline deposits induced in multiple preclinical drug toxicology studies. PLoS One. 2012;7(10):e47353. https://doi.org/10.1371/journal.pone.0047353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Groseclose MR, Castellino S. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem. 2013;85(21):10099–106. https://doi.org/10.1021/ac400892z.

    Article  CAS  PubMed  Google Scholar 

  69. Grey AC, Demarais NJ, West BJ, Donaldson PJ. A quantitative map of glutathione in the aging human lens. Int J Mass Spectrom. 2019;437:58–68. https://doi.org/10.1016/j.ijms.2017.10.008.

    Article  CAS  Google Scholar 

  70. Kim YH, Fujimura Y, Hagihara T, Sasaki M, Yukihira D, Nagao T, et al. In situ label-free imaging for visualizing the biotransformation of a bioactive polyphenol. Sci Rep. 2013;3:2805. https://doi.org/10.1038/srep02805.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sugiura Y, Honda K, Kajimura M, Suematsu M. Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice. Proteom. 2014;14(7–8):829–38. https://doi.org/10.1002/pmic.201300047.

    Article  CAS  Google Scholar 

  72. Fujimura Y, Miura D. MALDI mass spectrometry imaging for visualizing in situ metabolism of endogenous metabolites and dietary phytochemicals. Metab. 2014;4(2):319–46. https://doi.org/10.3390/metabo4020319.

    Article  CAS  Google Scholar 

  73. Russo C, Brickelbank N, Duckett C, Mellor S, Rumbelow S, Clench MR. Quantitative investigation of terbinafine hydrochloride absorption into a living skin equivalent model by MALDI-MSI. Anal Chem. 2018;90(16):10031–8. https://doi.org/10.1021/acs.analchem.8b02648.

    Article  CAS  PubMed  Google Scholar 

  74. Patel E. Fresh frozen versus formalin-fixed paraffin embedded for mass spectrometry imaging. In: Cole LM, editor. Imaging mass spectrom. New York, NY: Springer New York; 2017. p. 7–14.

    Chapter  Google Scholar 

  75. Bagley MC, Ekelof M, Rock K, Patisaul H, Muddiman DC. IR-MALDESI mass spectrometry imaging of underivatized neurotransmitters in brain tissue of rats exposed to tetrabromobisphenol A. Anal Bioanal Chem. 2018;410(30):7979–86. https://doi.org/10.1007/s00216-018-1420-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang H, DeGnore JP, Kelly BD, True J, Garsha K, Bieniarz C. A technique for relative quantitation of cancer biomarkers in formalin-fixed, paraffin-embedded (FFPE) tissue using stable-isotope-label based mass spectrometry imaging (SILMSI). J Mass Spectrom. 2015;50(9):1088–95. https://doi.org/10.1002/jms.3623.

    Article  CAS  PubMed  Google Scholar 

  77. Nazari M, Bokhart MT, Loziuk PL, Muddiman DC. Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Anal. 2018;143(3):654–61. https://doi.org/10.1039/c7an01828b.

    Article  CAS  Google Scholar 

  78. Eckelmann D, Kusari S, Spiteller M. Stable isotope labeling of prodiginines and serratamolides produced by Serratia marcescens directly on agar and simultaneous visualization by matrix-assisted laser desorption/lonization imaging high-resolution mass spectrometry. Anal Chem. 2018;90(22):13167–72. https://doi.org/10.1021/acs.analchem.8b03633.

    Article  CAS  PubMed  Google Scholar 

  79. Seaman C, Flinders B, Eijkel G, Heeren RM, Bricklebank N, Clench MR. "Afterlife experiment": use of MALDI-MS and SIMS imaging for the study of the nitrogen cycle within plants. Anal Chem. 2014;86(20):10071–7. https://doi.org/10.1021/ac501191w.

    Article  CAS  PubMed  Google Scholar 

  80. Sugiyama E, Yao I, Setou M. Visualization of local phosphatidylcholine synthesis within hippocampal neurons using a compartmentalized culture system and imaging mass spectrometry. Biochem Biophys Res Commun. 2018;495(1):1048–54. https://doi.org/10.1016/j.bbrc.2017.11.108.

    Article  CAS  PubMed  Google Scholar 

  81. Castro-Perez J, Hatcher N, Kofi Karikari N, Wang SP, Mendoza V, Shion H, et al. In vivo isotopically labeled atherosclerotic aorta plaques in ApoE KO mice and molecular profiling by matrix-assisted laser desorption/ionization mass spectrometric imaging. Rapid Commun Mass Spectrom. 2014;28(22):2471–9. https://doi.org/10.1002/rcm.7039.

    Article  CAS  PubMed  Google Scholar 

  82. Arts M, Soons Z, Ellis SR, Pierzchalski KA, Balluff B, Eijkel GB, et al. Detection of localized hepatocellular amino acid kinetics by using mass spectrometry imaging of stable isotopes. Angew Chem Int Ed. 2017;56(25):7146–50. https://doi.org/10.1002/anie.201702669.

    Article  CAS  Google Scholar 

  83. Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Källback P, et al. Detection of a high-turnover serotonin circuit in the mouse brain using mass spectrometry imaging. iScience. 2019;20:359–72. https://doi.org/10.1016/j.isci.2019.09.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sugiura Y, Katsumata Y, Sano M, Honda K, Kajimura M, Fukuda K, et al. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Sci Rep. 2016;6:32361. https://doi.org/10.1038/srep32361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Olde Damink SW, Jalan R, Deutz NE, Dejong CH, Redhead DN, Hynd P, et al. Isoleucine infusion during “simulated” upper gastrointestinal bleeding improves liver and muscle protein synthesis in cirrhotic patients. Hepatol. 2007;45(3):560–8. https://doi.org/10.1002/hep.21463.

    Article  CAS  Google Scholar 

  86. Matthews DE. An overview of phenylalanine and tyrosine kinetics in humans. J Nutr. 2007;137(6):1549S–55S. https://doi.org/10.1093/jn/137.6.1549S.

    Article  CAS  PubMed  Google Scholar 

  87. Groen BB, Horstman AM, Hamer HM, De Haan M, Van Kranenburg J, Bierau J, et al. Increasing insulin availability does not augment postprandial muscle protein synthesis rates in healthy young and older men. J Clin Endocrinol Metab. 2016;101(11):3978–88. https://doi.org/10.1210/jc.2016-1436.

    Article  CAS  PubMed  Google Scholar 

  88. Kihara M, Matsuo-Tezuka Y, Noguchi-Sasaki M, Yorozu K, Kurasawa M, Shimonaka Y, et al. Visualization of Fe-57-labeled heme isotopic fine structure and localization of regions of erythroblast maturation in mouse spleen by MALDI FTICR-MS imaging. J Am Soc Mass Spectrom. 2017;28(11):2469–75. https://doi.org/10.1007/s13361-017-1768-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cobice DF, Livingstone DEW, McBride A, MacKay CL, Walker BR, Webster SP, et al. Quantification of 11β-hydroxysteroid dehydrogenase 1 kinetics and pharmacodynamic effects of inhibitors in brain using mass spectrometry imaging and stable-isotope tracers in mice. Biochem Pharmacol. 2018;148:88–99. https://doi.org/10.1016/j.bcp.2017.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuck JF Jr. Carbohydrates of the lens in normal and precataractous states. Investig Ophthalmol Vis Sci. 1965;4(4):638–42.

    CAS  Google Scholar 

  91. van Heyningen R. The biochemistry of the lens: selected topics: Butterworth-Heinemann; 1977.

  92. Kinoshita JH. Pathways of glucose metabolsim in the lens. Investig Ophthalmol Vis Sci. 1965;4:619–28.

    CAS  Google Scholar 

  93. Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differ. 1981;19(3):134–53. https://doi.org/10.1111/j.1432-0436.1981.tb01141.x.

    Article  CAS  Google Scholar 

  94. Bassnett S, Beebe DC. Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev Dyn. 1992;194(2):85–93. https://doi.org/10.1002/aja.1001940202.

    Article  CAS  PubMed  Google Scholar 

  95. Bassnett S. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest Opth Vis Sci. 1995;36(9):1793–803.

    CAS  Google Scholar 

  96. Hothersall JS, Muirhead RP, Taylaur CE, Kunjara S, McLean P. Changes in uridine nucleotides and uridine nucleotide sugars in diabetic rat lens: implications in membrane glycoprotein formation. Biochem Med Metab Biol. 1993;50(3):292–300. https://doi.org/10.1006/bmmb.1993.1071.

    Article  CAS  PubMed  Google Scholar 

  97. Zahraei A, Guo G, Perwick R, Donaldson P, Demarais N, Grey G. Mapping glucose metabolites in the normal bovine lens: evaluation and optimisation of a MALDI imaging mass spectrometry method. J Mass Spectrom. 2020. https://doi.org/10.1002/jms.4666.

  98. van Heyningen R. Fluorescent derivatives of 3-hydroxy-L-kynurenine in the lens of man, the baboon and the grey squirrel. Biochem J. 1971;123(4):30P–1P. https://doi.org/10.1042/bj1230030p.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bemis K, Harry A, Eberlin L, Ferreira C, van de Ven SM, Mallick P, et al. Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinform. 2015;31(14):2418–20. https://doi.org/10.1093/bioinformatics/btv146.

    Article  CAS  Google Scholar 

  100. Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom. 2018;29(1):8–16. https://doi.org/10.1007/s13361-017-1809-6.

    Article  CAS  PubMed  Google Scholar 

  101. Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D, Tarasov A, et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Methods. 2017;14:57–60. https://doi.org/10.1038/nmeth.4072.

    Article  CAS  PubMed  Google Scholar 

  102. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Proto. 2016;11(12):2301–19. https://doi.org/10.1038/nprot.2016.136.

    Article  CAS  Google Scholar 

  104. Uppal K, Walker DI, Jones DP. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal Chem. 2017;89(2):1063–7. https://doi.org/10.1021/acs.analchem.6b01214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang H, Zhang D, Ray K, Zhu M. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom. 2009;44(7):999–1016. https://doi.org/10.1002/jms.1610.

    Article  CAS  PubMed  Google Scholar 

  106. Soltwisch J, Heijs B, Koch A, Vens-Cappell S, Höhndorf J, Dreisewerd K. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal Chem. 2020;92(13):8697–703. https://doi.org/10.1021/acs.analchem.0c01747.

    Article  CAS  PubMed  Google Scholar 

  107. Singh AV, Jungnickel H, Leibrock L, Tentschert J, Reichardt P, Katz A, et al. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci Rep. 2020;10(1):261. https://doi.org/10.1038/s41598-019-57136-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Niehaus M, Soltwisch J, Belov ME, Dreisewerd K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods. 2019;16(9):925–31. https://doi.org/10.1038/s41592-019-0536-2.

    Article  CAS  PubMed  Google Scholar 

  109. Spraggins JM, Djambazova KV, Rivera ES, Migas LG, Neumann EK, Fuetterer A, et al. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. Anal Chem. 2019;91(22):14552–60. https://doi.org/10.1021/acs.analchem.9b03612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fu T, Oetjen J, Chapelle M, Verdu A, Szesny M, Chaumot A, et al. In situ isobaric lipid mapping by MALDI–ion mobility separation–mass spectrometry imaging. J Mass Spectrom. 2020;55(9):e4531. https://doi.org/10.1002/jms.4531.

    Article  CAS  PubMed  Google Scholar 

  111. Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, et al. A cyclic ion mobility-mass spectrometry system. Anal Chem. 2019;91(13):8564–73. https://doi.org/10.1021/acs.analchem.9b01838.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Maurice and Phyllis Paykel Trust for small equipment funding, the Health Research Council of New Zealand, the Auckland Medical Research Foundation, and the University of Auckland Mass Spectrometry Hub Strategic Research Initiative. We also acknowledge Biorender.com as the source of some artwork in Figs. 1, 3, and 6.

Code availability

N/A

Funding

Funding is provided by the Auckland Medical Research Foundation (ACG and MT: #1119015, NJD: #1119018), the Health Research Council of New Zealand (ACG and AZ: #14/015, #20/872, and #20/692), and the University of Auckland Mass Spectrometry Hub, a Strategic Research Initiative from the University of Auckland (GG).

Author information

Authors and Affiliations

Authors

Contributions

A.C. Grey, M. Tang, and N.J. Demarais designed and drafted the manuscript. A. Demarais contributed data for the bovine lens data. G. Guo provided information for the bioinformatics section.

Corresponding author

Correspondence to Angus C. Grey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Published in the topical collection Mass Spectrometry Imaging 2.0 with guest editors Shane R. Ellis and Tiffany Porta Siegel.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grey, A.C., Tang, M., Zahraei, A. et al. Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem 413, 2637–2653 (2021). https://doi.org/10.1007/s00216-021-03189-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03189-8

Keywords

Navigation