Skip to main content
Log in

Brain tissue lipidomics: Direct probing using matrix-assisted laser desorption/ionization mass spectrometry

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Lipidomics is the new frontier in biomolecular structural studies. Not only are lipids the main components in membranes that define the contours of the cell and its organelles, but they are also used for storage. Lipids form stable noncovalent complexes with proteins as well as with many drugs. Lipids are a storage depot for drugs and certain types of organic molecules. To study lipid composition and distribution, complex and time-consuming techniques are used. However, recent advances in mass spectrometry, mainly matrix-assisted laser desorption/ionization (MALDI) have made it possible to directly probe tissues to study structural components, as well as for the localization of drugs. Direct tissue imaging is a powerful tool as it gives a more complete and accurate structural picture and can trace and follow where drugs localize in tissue with minimal anatomical disruption and a minimum of manipulations. Hence, we believe that in addition to its accuracy and efficiency, this new approach will lead to a better understanding of physiological processes as well as the pathophysiology of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujiwaki T, Yamaguchi S, Sukegawa K, Taketomi T. Application of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry for analysis of sphingolipids in tissues from sphingolipidosis patients.J Chromatogr B Biomed Sci Appl. 1999;731:45–52.

    Article  CAS  PubMed  Google Scholar 

  2. He X, Chen F, McGovern MM, Schuchman EH. A fluorescence-based, high-throughput sphingomyelin assay for the analysis of Niemann-Pick disease and other disorders of sphingomyelin metabolism.Anal Biochem. 2002;306:115–123.

    Article  CAS  PubMed  Google Scholar 

  3. Han X Jr, Holtzman DM, Jr, McKeel DW, Jr, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis.J Neurochem. 2002;82:809–818.

    Article  CAS  PubMed  Google Scholar 

  4. Murphy EJ, Schapiro MB, Rapoport SI, Shetty HU. Phospholipid composition and levels are altered in Down syndrome brain.Brain Res. 2000;867:9–18.

    Article  CAS  PubMed  Google Scholar 

  5. Woods AS, Moyer SC, Wang H-YJ, Wise RA. Interaction of chlorisondamine with the neuronal nicotinic acetylcholine receptor.J Proteome Res. 2003;2:207–212.

    Article  CAS  PubMed  Google Scholar 

  6. Woods AS, Ugarov M, Egan T, et al. Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS.Anal Chem. 2004;76:2187–2195.

    Article  CAS  PubMed  Google Scholar 

  7. Woods AS. The mighty arginine, the stable quaternary amines, the powerful aromatics, and the aggressive phosphate: their role in the noncovalent minuet.J Proteome Res. 2004;3:478–484.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki K. Chemistry and metabolism of brain lipids. In: Albers RW, ed.Basic Neurochemistry: Boston, MA: Little, Brown, and Company, 1972:207–227.

    Google Scholar 

  9. Joyce S, Woods AS, Yewdell JW, et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol.Science. 1998;279:1541–1544.

    Article  CAS  PubMed  Google Scholar 

  10. Ceppi P, Colombo S, Francolini M, Raimondo F, Borgese N, Masserini M. Two tail-anchored protein variants, differing in transmembrane domain length and intracellular sorting, interact differently with lipids.Proc Natl Acad Sci USA. 2005;102:16269–16274.

    Article  CAS  PubMed  Google Scholar 

  11. Fisar Z. Interactions between tricyclic antidepressants and phospholipid bilayer membranes.Gen Physiol Biophys. 2005;24:161–180.

    CAS  PubMed  Google Scholar 

  12. Siuzdak G. Ion sources and sample introduction. In:Mass Spectrometry for Biotechnology. San Diego, CA: Academic Press, 1996;11–13.

    Google Scholar 

  13. Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of phospholipids.J Mass Spectrom. 1995;30:1333–1346.

    Article  CAS  Google Scholar 

  14. Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of sphingo- and glycosphingo-lipids.J Mass Spectrom. 1995;30:1311–1324.

    Article  CAS  Google Scholar 

  15. Al-Saad KA, Siems WF, Hill HH, Zabrouskov V, Knowles NR. Structural analysis of phosphatidylcholines by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.J Am Soc Mass Spectrom. 2003;14:373–382.

    Article  CAS  PubMed  Google Scholar 

  16. Schiller J, Sub R, Arnhold J, et al. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research.Prog Lipid Res. 2004;43:449–488.

    Article  CAS  PubMed  Google Scholar 

  17. Estrada R, Yappert MC. Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.J Mass Spectrom. 2004;39:412–422.

    Article  CAS  PubMed  Google Scholar 

  18. Juhasz P, Costello CE. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of underivatized and permethylated gangliosides.J Am Soc Mass Spectrom. 1992;3:785–796.

    Article  CAS  Google Scholar 

  19. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS.Anal Chem. 1997;69:4751–4760.

    Article  CAS  PubMed  Google Scholar 

  20. Rubakhin SS, Li L, Moroz TP, Sweedler JV. Characterization of the aplysia californica cerebral ganglion F cluster.J Neurophysiol. 1999;81:1251–1260.

    CAS  PubMed  Google Scholar 

  21. Jackson SN, Wang H-YJ, Ugarov M, Egan T, Schultz JA, Woods AS. Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS.J Am Soc Mass Spectrom. 2005;16:133–138.

    Article  CAS  PubMed  Google Scholar 

  22. Jackson SN, Wang H-YJ, Woods AS, Direct profiling of lipid distribution in brain tissue using MALDI-TOF MS.Anal Chem. 2005;77:4523–4527.

    Article  CAS  PubMed  Google Scholar 

  23. Jackson SN, Yang H-YJ, Woods AS. In situ structural characterization of phosphatidylcholines in brain tissue using MALDI/TOF-TOF.J Am Soc Mass Spectrom. 2005;16:2052–2056.

    Article  CAS  PubMed  Google Scholar 

  24. Rujoi M, Estrada R, Yappert MC. In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue.Anal Chem. 2004;76:1657–1663.

    Article  CAS  PubMed  Google Scholar 

  25. Touboul D, Piednoel H, Voisin V, et al. Changes of phospholipid composition within the dystrophic muscle by matrix-assisted laser desorption/ionization mass spectrometry and mass spectrometry imaging.Eur J Mass Spectrom (Chichester, Eng). 2004;10:657–664.

    Article  CAS  Google Scholar 

  26. Schwartz SA, Reyzer ML, Caprioli RM.Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation.J Mass Spectrom. 2003;38:699–708.

    Article  CAS  PubMed  Google Scholar 

  27. Agranoff BW, Benjamins JA, Hajra AK. Lipids. In: Siegel GJ, [Include other editors; use “et al” after 3 if there are more than 6.] et al. eds.Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 6th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 1999;47–67.

    Google Scholar 

  28. Ma Y-C, Kim H-Y. Development of the on-line high-performance liquid chromatography/thermospray mass spectrometry method for the analysis of phospholipid molecular species in rat brain.Anal Biochem. 1995;226:293–301.

    Article  CAS  PubMed  Google Scholar 

  29. Sonnino S, Chigorno V. Ganglioside molecular species containing C18-and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures.Biochim Biophys Acta. 2000;1469:63–77.

    CAS  PubMed  Google Scholar 

  30. Schwarz A, Futerman AH. The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies.Biochim Biophys Acta. 1996;1286:247–267.

    CAS  PubMed  Google Scholar 

  31. Heffer-Lauc M, Lauc G, Nimrichter L, Fromholt SE, Schnaar RL. Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation.Biochim Biophys Acta. 2005;1686:200–208.

    CAS  PubMed  Google Scholar 

  32. Molander M, Berthold C-H, Persson H, Fredman P. Immunostaining of ganglioside GD1b, GD3 and GM1 in rat cerebellum: cellular layer and cell type specific associations.J Neurosci Res. 2000;60:531–542.

    Article  CAS  PubMed  Google Scholar 

  33. Spengler B, Hubert M. Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis.J Am Soc Mass Spectrom. 2002;13:735–748.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina S. Woods.

Additional information

Published: June 2, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, A.S., Jackson, S.N. Brain tissue lipidomics: Direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J 8, 44 (2006). https://doi.org/10.1007/BF02854910

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854910

Keywords

Navigation