Skip to main content
Log in

Novel synthesis of a dual fluorimetric sensor for the simultaneous analysis of levodopa and pyridoxine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, a fluorimetric sensor was fabricated based on molecularly imprinted polymers (MIPs) with two types of carbon dots as fluorophores. The MIPs produced had similar excitation wavelengths (400 nm) and different emission wavelengths (445 and 545 nm). They were used for the simultaneous analysis of levodopa and pyridoxine. First, two types of carbon dots, i.e. nitrogen-doped carbon dots (NCDs) with a quantum yield of 43%, and carbon dots from o-phenylenediamine (O-CDs) with a quantum yield of 17%, were prepared using the hydrothermal method. Their surfaces were then covered with MIPs through the reverse microemulsion method. Finally, a mixture of powdered NCD@MIP and O-CD@MIP nanocomposites was used for the simultaneous fluorescence measurement of levodopa and pyridoxine. Under optimal conditions using response surface methodology and Design-Expert software, a linear dynamic range of 38 to 369 nM and 53 to 457 nM, and detection limits of 13 nM and 25 nM were obtained for levodopa and pyridoxine, respectively. The capability of the proposed fluorimetric sensor was investigated in human blood serum and urine samples.

Schematic representation of nitrogen-doped carbon dots (NCDs), carbon dots from o-phenylenediamine (O-CDs), NCDs coated with imprinted polymers (NCD@MIPs), and O-CDs coated with imprinted polymers (O-CD@MIPs) in the presence and absence of levodopa and pyridoxine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huynh TP, Bikram KCC, Lisowski W, et al. Molecularly imprinted polymer of bis(2,2′-bithienyl)methanes for selective determination of adrenaline. Bioelectrochemistry. 2013; 9337–45. https://doi.org/10.1016/j.bioelechem.2012.07.003.

  2. Klawans HL, Ringel SP, Shenker DM. Failure of vitamin B6 to reverse the l-dopa effect in patients on a dopa decarboxylase inhibitor. J Neurol Neurosurg Psychiatry. 1971;34(6):682–6. https://doi.org/10.1136/jnnp.34.6.682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar PP, Vidyadhara S, Murthy TEGK, et al. Development and validation of RP-HPLC method for simultaneous estimation of Doxylamine succinate and pyridoxine hydrochloride in bulk and pharmaceutical dosage forms. Eurasian J Anal Chem. 2017;12(5):459–68. https://doi.org/10.12973/ejac.2017.00182a.

    Article  CAS  Google Scholar 

  4. Brunetti B, Desimoni E. Voltammetric determination of vitamin B6 in food samples and dietary supplements. J Food Compos Anal. 2014;33(2):155–60. https://doi.org/10.1016/j.jfca.2013.12.008.

    Article  CAS  Google Scholar 

  5. Rezaei B, Shams-Ghahfarokhi L, Havakeshian E, Ensafi AA. An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta. 2016:15842–50. https://doi.org/10.1016/j.talanta.2016.04.061.

  6. Movlaee K, Beitollahi H, Ganjali MR, Norouzi P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchim Acta. 2017;184(9):3281–9. https://doi.org/10.1007/s00604-017-2291-3.

    Article  CAS  Google Scholar 

  7. Gao X, Yue H, Song S, et al. 3-dimensional hollow graphene balls for voltammetric sensing of levodopa in the presence of uric acid. Microchim Acta. 2018;185(2):91. https://doi.org/10.1007/s00604-017-2644-y.

    Article  CAS  Google Scholar 

  8. Shrivas K, Nirmalkar N, Thakur SS, et al. Sucrose capped gold nanoparticles as a plasmonic chemical sensor based on non-covalent interactions: Application for selective detection of vitamins B1 and B6 in brown and white rice food samples. Food Chem. 2018;25014–21.https://doi.org/10.1016/j.foodchem.2018.01.002.

  9. Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chemie - Int Ed. 2013;52(14):3953–7. https://doi.org/10.1002/anie.201300519.

    Article  CAS  Google Scholar 

  10. Liu G, Chen Z, Jiang X, et al. In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensors Actuators, B Chem. 2016;228302–307. https://doi.org/10.1016/j.snb.2016.01.010.

  11. Wang N, Wang Y, Guo T, et al. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron. 2016;8568–75. https://doi.org/10.1016/j.bios.2016.04.089.

  12. Wildgoose GG, Banks CE, Compton RG. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small. 2006;2(2):182–93. https://doi.org/10.1002/smll.200500324.

    Article  CAS  PubMed  Google Scholar 

  13. Scampicchio M, Wang J, Blasco AJ, et al. Nanoparticle-based assays of antioxidant activity. Anal Chem. 2006;78(6):2060–3. https://doi.org/10.1021/ac052007a.

    Article  CAS  PubMed  Google Scholar 

  14. Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7. https://doi.org/10.1021/ja062677d.

    Article  CAS  PubMed  Google Scholar 

  15. Cai X, Lin M, Tan S, et al. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N Y. 2012;50(10):3407–15. https://doi.org/10.1016/j.carbon.2012.02.002.

    Article  CAS  Google Scholar 

  16. Ding C, Deng Z, Chen J, Jin Y. One-step microwave synthesis of N,S co-doped carbon dots from 1,6-hexanediamine dihydrochloride for cell imaging and ion detection. Colloids Surfaces B Biointerfaces. 2020;189110838. https://doi.org/10.1016/j.colsurfb.2020.110838.

  17. Ling L, Zhu Z, Shen H, et al. One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Method. Ind Eng Chem Res. 2020;59(11):4968–76. https://doi.org/10.1021/acs.iecr.9b06833.

    Article  CAS  Google Scholar 

  18. Li YK, Yang T, Chen ML, Wang JH. Supported carbon dots serve as high-performance adsorbent for the retention of trace cadmium. Talanta. 2018:18018–24. https://doi.org/10.1016/j.talanta.2017.12.020.

  19. Dong Y, Wan L, Cai J, et al. Natural carbon-based dots from humic substances. Sci Rep. 2015;5. https://doi.org/10.1038/srep10037.

  20. Lv P, Xie D, Zhang Z. Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta. 2018:188145–51. https://doi.org/10.1016/j.talanta.2018.05.068.

  21. Wang HF, He Y, Ji TR, Yan XP. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem. 2009;81(4):1615–21. https://doi.org/10.1021/ac802375a.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou X, Gao X, Liu M, et al. A poly(5-indolylboronic acid) based molecular imprint doped with carbon dots for fluorometric determination of glucose. Microchim Acta. 2017;184(10):4175–81. https://doi.org/10.1007/s00604-017-2448-0.

    Article  CAS  Google Scholar 

  23. Ensafi AA, Kazemifard N, Rezaei B. Development of a selective prilocaine optical sensor based on molecularly imprinted shell on CdTe quantum dots. Sensors Actuators B Chem. 2017:242835–41. https://doi.org/10.1016/j.snb.2016.09.175.

  24. Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron. 2018:10217–26. https://doi.org/10.1016/j.bios.2017.10.045.

  25. Díaz-García ME, Fernández-González A. Molecularly Imprinted Polymers. In: Encyclopedia of Analytical Science: Second Edition. Elsevier, 2004;172–182. https://doi.org/10.1016/B0-12-369397-7/00700-7

  26. Hao T, Wei X, Nie Y, et al. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta. 2016;183(7):2197–203. https://doi.org/10.1007/s00604-016-1851-2.

    Article  CAS  Google Scholar 

  27. Zhang Y, He YH, Cui PP, et al. Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution. RSC Adv. 2015;5(50):40393–401. https://doi.org/10.1039/c5ra04653j.

    Article  CAS  Google Scholar 

  28. Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chemie - Int Ed. 2015;54(18):5360–3. https://doi.org/10.1002/anie.201501193.

    Article  CAS  Google Scholar 

  29. Ma Y, Chen X, Bai J, et al. Highly selective fluorescence chemosensor based on carbon-dot-aerogel for detection of aniline gas. Inorg Chem Commun. 2019;10064–69. https://doi.org/10.1016/j.inoche.2018.12.013.

  30. Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta. 2008;622(1–2):48–61. https://doi.org/10.1016/j.aca.2008.05.057.

    Article  CAS  PubMed  Google Scholar 

  31. Amjadi M, Jalili R. Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens Bioelectron. 2017:96121–6. https://doi.org/10.1016/j.bios.2017.04.045.

  32. Ensafi AA, Nasr-Esfahani P, Rezaei B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sensors Actuators B Chem. 2018:257889–96. https://doi.org/10.1016/j.snb.2017.11.050.

  33. Zhao GJ, Liu JY, Zhou LC, Han KL. Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B. 2007;111(30):8940–5. https://doi.org/10.1021/jp0734530.

    Article  CAS  PubMed  Google Scholar 

  34. Ghali M. Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots. J Lumin. 2010;130(7):1254–7. https://doi.org/10.1016/j.jlumin.2010.02.034.

    Article  CAS  Google Scholar 

  35. Zu F, Yan F, Bai Z, et al. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta. 2017;184(7):1899–914. https://doi.org/10.1007/s00604-017-2318-9.

    Article  CAS  Google Scholar 

  36. Stobiecka M, Chalupa A. Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein Survivin channeled-Shell gating. J Phys Chem B. 2015;119(41):13227–35. https://doi.org/10.1021/acs.jpcb.5b07778.

    Article  CAS  PubMed  Google Scholar 

  37. Baião V, Tomé LIN, Brett CMA. Iron oxide nanoparticle and multiwalled carbon nanotube modified glassy carbon electrodes. Application to levodopa detection. Electroanalysis. 2018;30(7):1342–8. https://doi.org/10.1002/elan.201700854.

    Article  CAS  Google Scholar 

  38. Kul D, Brett CMA. Electrochemical investigation and determination of levodopa on poly(Nile blue-a)/multiwalled carbon nanotube modified glassy carbon electrodes. Electroanalysis. 2014;26(6):1320–5. https://doi.org/10.1002/elan.201400071.

    Article  CAS  Google Scholar 

  39. Yue HY, Zhang H, Huang S, et al. Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron. 2017;89592–597. https://doi.org/10.1016/j.bios.2016.01.078.

  40. Beitollahi H, Salimi H, Ganjali MR. Selective determination of levodopa in the presence of vitamin B 6, theophylline and guaifenesin using a glassy carbon electrode modified with a composite of hematoxylin and graphene/ZnO. Anal Sci. 2018;34(8):867–73. https://doi.org/10.2116/analsci.17P526.

    Article  CAS  PubMed  Google Scholar 

  41. Chen C, Zou C, Li L, et al. Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. Talanta. 2020;214120817. https://doi.org/10.1016/j.talanta.2020.120817.

  42. Hu M, Yu H, Wei F, et al. Citrate-capped Mn-modified CdSe/CdS quantum dots as luminescent probes for levodopa detection in aqueous solution. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2012;91130–135. https://doi.org/10.1016/j.saa.2012.01.081.

  43. Moslehipour A, Bigdeli A, Ghasemi F, Hormozi-Nezhad MR. Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa. Microchem J. 2019:148591–6. https://doi.org/10.1016/j.microc.2019.05.041.

  44. Gonzalez-Rodriguez J, Sevilla JM, Pineda T, Blazquez M. Electrochemical analysis on compounds of the vitamin B6 family using glassy carbon electrodes. Int J Electrochem Sci. 2012;7(3):2221–9.

    CAS  Google Scholar 

  45. Llorent-Martínez EJ, García-Reyes JF, Ortega-Barrales P, Molina-Díaz A. A multicommuted fluorescence-based sensing system for simultaneous determination of vitamins B2 and B6. Anal Chim Acta. 2006;555(1):128–33. https://doi.org/10.1016/j.aca.2005.08.054.

    Article  CAS  Google Scholar 

  46. Zobeiri E, Bayandori Moghaddam A, Gudarzy F, et al. Modified Eu-doped Y2O3 nanoparticles as turn-off luminescent probes for the sensitive detection of pyridoxine. Luminescence. 2015;30(3):290–5. https://doi.org/10.1002/bio.2727.

    Article  CAS  PubMed  Google Scholar 

  47. Wang RY, Wu J, Wang LJ, et al. CdTe quantum dots as fluorescence sensor for the determination of aminophylline in aqueous solution. Opt Spectrosc (English Transl Opt i Spektrosk). 2013;115(4):596–600. https://doi.org/10.1134/S0030400X13100147.

    Article  CAS  Google Scholar 

  48. Escandar GM, Bystol AJ, Campiglia AD. Spectrofluorimetric method for the determination of piroxicam and pyridoxine. Anal Chim Acta. 2002;466(2):275–83. https://doi.org/10.1016/S0003-2670(02)00595-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Isfahan University of Technology (IUT) Research Council and Center of Excellence in Sensor and Green Chemistry for their patronage and help in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Rezaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human samples were in accordance with the ethical standards of the institutional research committee of Isfahan University of Technology and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Permissions

The management of the Health Center of Isfahan University of Technology has authorized the use of blood and urine samples in this study, and the publication of the results of the study of the mentioned samples has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, S.M., Rezaei, B., Jamei, H.R. et al. Novel synthesis of a dual fluorimetric sensor for the simultaneous analysis of levodopa and pyridoxine. Anal Bioanal Chem 413, 377–387 (2021). https://doi.org/10.1007/s00216-020-03005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03005-9

Keywords

Navigation