Skip to main content
Log in

Polypyrrole merged zirconium-based metal-organic framework NU-1000 for detection of levodopa

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A post-synthetic integration of polypyrrole onto NU-1000 MOF (PPy@NU-1000) was done by pyrrole adsorption, followed by oxidative polymerization. The synthesized materials were characterized by XRD, SEM, BET, and FTIR. The ultra-high specific surface area with high-density catalytic sites of NU-1000 (2223 m2 g−1) was combined with the electrical conductivity of PPy (2–100 S cm−1). PPy@NU-1000 provides superior electrocatalytic activity and charge transfer properties compared to an individual component. The PPy@NU-1000-modified GCE was applied to detect the biomolecule Levodopa (LD). The DPV oxidation peak of LD was strongest at 272 ± 10 mV vs. Ag/AgCl reference electrode. Under the optimized experimental condition, the fabricated electrochemical sensor exhibited a wide quantification range of 0.005–70 μM with a sub-nanomolar detection limit of 0.0001 μM (S/N 3). The described sensor exhibits high sensitivity (2.08 μA μM−1 cm−2) with reasonable stability, reproducibility, and selectivity for the detection LD in the presence of potentially interfering compounds. Furthermore, human serum analysis showed excellent recovery values within the range 99.3–101.6%. Validation of the method was performed against HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dorsey ER, Elbaz A (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(17):939–953

    Article  Google Scholar 

  2. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. Brain 122:1437–1448

    PubMed  Google Scholar 

  3. Elbarbry F, Nguyen V, Mirka A, Zwickey H, Rosenbaum R (2019) A new validated HPLC method for the determination of levodopa: application to study the impact of ketogenic diet on the pharmacokinetics of levodopa in Parkinson’s participants. Biomed Chromatogr 33:4382

    Article  Google Scholar 

  4. Chou Y-C, Shih C-I, Chiang C-C, Hsu C-H, Yeh Y-C (2019) Reagent-free DOPA-dioxygenase colorimetric biosensor for selective detection of L-DOPA. Sensors Actuators B Chem 15:126717

    Article  Google Scholar 

  5. Chen Y, Sun X, Biswas S, Xie Y, Wang Y, Hu X (2019) Integrating polythiophene derivates to PCN-222(Fe) for electrocatalytic sensing of L-dopa. Biosens Bioelectron 41:111470

    Article  Google Scholar 

  6. Gao X, Yue H, Song S, Huang S, Li B, Lin X, Guo E, Wang B, Guan E, Zhang H, Wu P (2018) 3-Dimensional hollow graphene balls for voltammetric sensing of levodopa in the presence of uric acid. Microchim Acta 185:91

    Article  Google Scholar 

  7. Stanković DM, Jović M, Ognjanović M, Lesch A, Fabián M, Girault HH, Antić B (2019) Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres. Microchim Acta 186:532

    Article  Google Scholar 

  8. Santos AM, Wong A, Vicentini FC, Fatibello-Filho O (2019) Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β cyclodextrin. Microchim Acta 186:174

    Article  Google Scholar 

  9. Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C (2016) Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 85:280–307

    Article  CAS  Google Scholar 

  10. Xu Q, Wang Y, Jin G, Jin D, Li K (2014) Photooxidation assisted sensitive detection of trace Mn2+ in tea by NH2-MIL-125 (Ti) modified carbon paste electrode. Sensors Actuators B-Chem 201:274–280

    Article  CAS  Google Scholar 

  11. Dong BX, Zhang SY, Liu WL, Wu YC, Ge J (2015) Gas storage and separation in a water-stable [(Cu5BTT3)-B-I](4-) anion framework comprising a giant multi-prismatic nanoscale cage. Chem Commun 51:5691–5694

    Article  CAS  Google Scholar 

  12. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  PubMed  Google Scholar 

  13. Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513

    Article  CAS  Google Scholar 

  14. Deri P, Bury W, Hupp JT, Farha OK (2014) Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem Commun 50:1965–1968

    Article  Google Scholar 

  15. Ikuno T, Zheng J, Vjunov A, Sanchez-Sanchez M, Ortuño MA, Pahls DR, Fulton JL, Camaioni DM, Li Z, Ray D, Mehdi BL, Browning ND, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Lercher JA (2017) Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J Am Chem Soc 139:10294–10301

    Article  CAS  PubMed  Google Scholar 

  16. Ashassi-Sorkhabi H, Kazempour A (2020) Incorporation of organic/inorganic materials into polypyrrole matrix to reinforce its anticorrosive properties for the protection of steel alloys: a review. J Mol Liq 309:113085

    Article  CAS  Google Scholar 

  17. Biswas S, Chen Y, Xie Y, Sun X, Wang Y (2020) Ultra-small Au(0) inserted hollow PCN-222 MOF for the high-sensitive detection of estradiol. Anal Chem 92:4566–4572

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Chen H, Hu X, Yu H (2016) Highly stable and ultrasensitive chlorogenic acid sensor based on metal-organic frameworks/titanium dioxide nanocomposites. Analyst 141:4647–4653

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Yuan S, Xu B, Xu Y, Cao K (2018) A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catal Today 315:184–193

    Article  CAS  Google Scholar 

  20. Zou L, Hou C-C, Liu Z, Pang H, Xu Q (2018) Super long single-crystal metal-organic framework nanotubes. J Am Chem Soc 140:15393–15401

    Article  CAS  PubMed  Google Scholar 

  21. Islamoglu T, Otake K-I, Li P, Buru CT, Peters AW, Akpinar I, Garibay SJ, Farha OK (2018) Revisiting the structural homogeneity of NU-1000 a Zr-based metal–organic framework. Cryst Eng Comm 20:5913–5918

    Article  CAS  Google Scholar 

  22. Liu W-G, Truhlar DG (2017) Computational linker design for highly crystalline metal−organic framework NU-1000. Chem Mater 29:8073–8081

    Article  CAS  Google Scholar 

  23. Deria P, Mondloch JE, Tylianakis E, Ghosh P, Bury W, Snurr RQ, Hupp JT, Farha OK (2013) Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J Am Chem Soc 135:16801–16804

    Article  CAS  PubMed  Google Scholar 

  24. Biswas S, Das R, Basu M, Bandyopadhyay R, Pramanik P (2016) Synthesis of carbon nanoparticle embedded graphene for sensitive and selective determination of dopamine and ascorbic acid in biological fluids. RSC Adv 6:100723–100731

    Article  CAS  Google Scholar 

  25. Biswas S, Pradhan S, Naskar H, Bandyopadhyay R, Pramanik P (2020) Tuning of Sm2O3 nanorod for trace level voltammetric determination of acetaminophen and ciprofloxacin in real samples. New J Chem 44:1921–1930

    Article  CAS  Google Scholar 

  26. Hormozi-Nezhad MR, Moslehipour A, Bigdeli A (2017) Simple and rapid detection of L-Dopa based on in situ formation of polylevodopa nanoparticles. Sensors Actuators B Chem 243:715–720

    Article  CAS  Google Scholar 

  27. Sandeep S, Santhosh AS, Swamy NK, Suresh GS, Melo JS, Nithin KS (2018) Electrochemical detection of L-dopa using crude polyphenol oxidase enzyme immobilized on electrochemically reduced RGO-Ag nanocomposite modified graphite electrode. Mater Sci Eng B 232–235:15–21

    Article  Google Scholar 

  28. Sunder GSS, Rohanifar A, Devasurendra AM, Kirchhoff JR (2019) Selective determination of L-DOPA at a graphene oxide/yttrium oxide modified glassy carbon electrode. Electrochim Acta 301:192–199

    Article  Google Scholar 

  29. Kamyabi MA, Rahmanian N (2015) An electrochemical sensing method for the determination of levodopa using a poly(4-methylortho-phenylenediamine)/MWNT modified GC electrode. Anal Methods 7:1339–1348

    Article  CAS  Google Scholar 

  30. Kalachar HCB, Basavanna S, Viswanatha R, Arthoba Naik Y, Ananda Raj D, Sudhad PN (2011) Electrochemical determination of l-Dopa in Mucuna pruriens seeds, leaves and commercial siddha product using gold modified pencil graphite electrode. Electroanalysis 23:1107–1115

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Jiangsu Postdoc Foundation of China (217744), National Natural Science Foundation of China (21205103, 21275124), Jiangsu Provincial Nature Foundation of China (BK2012258), Young and Middle-aged Academic Leaders Foundation of Yangzhou University, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by Dr. S. Biswas through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Sudip Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Instrumentation and apparatus. Tables and figures related to the optimization of pyrrole precursor, composition, real sample analyses, repeatability, reproducibility, robustness, selectivity.

ESM 1

(DOC 1469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Chen, Y., Xie, Y. et al. Polypyrrole merged zirconium-based metal-organic framework NU-1000 for detection of levodopa. Microchim Acta 187, 661 (2020). https://doi.org/10.1007/s00604-020-04622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04622-y

Keywords

Navigation