Skip to main content
Log in

Detection of theophylline using molecularly imprinted polymers based on thioglycolic acid-modified CdTe quantum dots

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers (MIPs) and quantum dots (QDs) have been widely employed to fabricate highly sensitive and selective sensor. Here, we developed a fluorescence nanosensor based on thioglycolic acid-modified CdTe QDs that is coated with molecularly imprinted polymers for the specific detection of theophylline (THP). Initially, water-soluble thioglycolic acid-modified CdTe QDs were synthesized by refluxing method. Then, MIPs-coated QDs (MIPs-QDs) composite was produced by sol–gel process using THP as a template. Therefore, the selectivity of the molecular imprinting technique and advantages of QDs were combined. The prepared QDs and the MIPs-QDs were characterized using X-ray diffraction technique, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and fluorescence spectrometry. Finally, this sensing system was successfully used to detect THP in human plasma samples with recoveries of 90% to 108%. A very good linear relationship was observed between the decreasing in the fluorescence intensity of MIPs-QDs and increasing the THP concentration within concentration range of 0.14–3.05 µmol L−1, with a correlation coefficient of 0.9992 and detection limit of 0.07 µmol L−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.R. Rajabi, M. Shamsipur, A.A. Khosravi, O. Khani, M.H. Yousefi, Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 107, 256–262 (2013)

    Article  CAS  Google Scholar 

  2. M. Shamsipur, H.R. Rajabi, Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater. Sci. Eng. C 36, 139–145 (2014)

    Article  CAS  Google Scholar 

  3. M. Rutkowska, J. Płotka-Wasylka, C. Morrison, P.P. Wieczorek, J. Namieśnik, M. Marć, Application of molecularly imprinted polymers in an analytical chiral separation and analysis. TrAC Trends Anal. Chem. 102, 91–102 (2018)

    Article  CAS  Google Scholar 

  4. L. Chen, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev. 40, 2922–2942 (2011). https://doi.org/10.1039/c0cs00084a

    Article  CAS  PubMed  Google Scholar 

  5. H.R. Rajabi, A. Zarezadeh, Development of a new chemically modified carbon paste electrode based on nano-sized molecular imprinted polymer for selective and sensitive determination of naproxen. J. Mater. Sci. Mater. Electron. 27, 10911–10920 (2016)

    Article  CAS  Google Scholar 

  6. L.M. Madikizela, N.T. Tavengwa, H. Tutu, L. Chimuka, Green aspects in molecular imprinting technology: from design to environmental applications. Trends Environ. Anal. Chem. 17, 14–22 (2018). https://doi.org/10.1016/j.teac.2018.01.001

    Article  CAS  Google Scholar 

  7. A.M. Piloto, D.S.M. Ribeiro, S.S.M. Rodrigues, C. Santos, J.L.M. Santos, M.G.F. Sales, Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Sci. Rep. 8, 1–11 (2018). https://doi.org/10.1038/s41598-018-23271-z

    Article  CAS  Google Scholar 

  8. J. Mayahi, H.R. Rajabi, Comparison study on separation of morin: ultrasound assisted molecularly imprinted polymeric nanoparticles-solid phase extraction versus solidification of floating organic-drop assisted dispersive liquid–liquid microextraction. New J. Chem. 41, 14236–14245 (2017)

    Article  CAS  Google Scholar 

  9. E.E. Ferapontova, E.M. Olsen, K.V. Gothelf, Communication an RNA aptamer-based electrochemical biosensor for detection of theophylline in serum an RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Communication (2008). https://doi.org/10.1021/ja711326b

    Article  Google Scholar 

  10. S.R. El-Shabouri, S.A. Hussein, S.E. Emara, Colorimetric determination of theophylline and aminophylline with diazotized p-nitroaniline. Talanta 36, 1288–1290 (1989)

    Article  CAS  Google Scholar 

  11. G.F. Johnson, W.A. Dechtiaruk, H.M. Solomon, Gas-chromatographic determination of theophylline in human serum and saliva. Clin. Chem. 21, 144–147 (1975)

    Article  CAS  Google Scholar 

  12. E.P. Gil, H.T. Tang, H.B. Halsall, W.R. Heineman, A.S. Misiego, Competitive heterogeneous enzyme immunoassay for theophylline by flow-injection analysis with electrochemical detection of p-aminophenol. Clin. Chem. 36, 662–665 (1990)

    Article  CAS  Google Scholar 

  13. M.C. Gutiérrez, A. Gómez-Hens, D. Pérez-Bendito, Stopped-flow fluorimetric determination of theophylline in pharmaceutical preparations. Analyst. 113, 559–562 (1988)

    Article  Google Scholar 

  14. M. Sánchez-Cabezudo, J.M. Fernández-Romero, M.D. Luquede Castro, Fluorimetric-flow injection determination of theophylline based on its inhibitory effect on immobilized alkaline phosphatase. Anal. Chim. Acta 308, 159–163 (1995)

    Article  Google Scholar 

  15. H. Jiang, K. Ling, X. Tao, Q. Zhang, Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens. Bioelectron. 70, 299–303 (2015)

    Article  CAS  Google Scholar 

  16. J. Wang, W. Cheng, F. Meng, M. Yang, Y. Pan, P. Miao, Hand-in-hand RNA nanowire-based aptasensor for the detection of theophylline. Biosens. Bioelectron. 101, 153–158 (2018)

    Article  CAS  Google Scholar 

  17. A.A. Ensafi, N. Kazemifard, B. Rezaei, Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots. Sens. Actuators B Chem. 252, 846–853 (2017). https://doi.org/10.1016/j.snb.2017.06.078

    Article  CAS  Google Scholar 

  18. A.A. Ensafi, N. Kazemifard, B. Rezaei, Development of a selective prilocaine optical sensor based on molecularly imprinted shell on CdTe quantum dots. Sens. Actuators B Chem. 242, 835–841 (2017). https://doi.org/10.1016/j.snb.2016.09.175

    Article  CAS  Google Scholar 

  19. M. Bagher, M. Shamsipur, S. Dehdashtian, H. Reza, Development of a selective and sensitive voltammetric sensor for propylparaben based on a nanosized molecularly imprinted polymer—carbon paste electrode. Mater. Sci. Eng. C 36, 102–107 (2014). https://doi.org/10.1016/j.msec.2013.11.021

    Article  CAS  Google Scholar 

  20. J. Yang, M.-H. Wu, Z.-Z. Lin, Z.-Y. Huang, Detection of trace leucomalachite green with a nanoprobe of CdTe quantum dots coated with molecularly imprinted silica: via synchronous fluorescence quenching. New J. Chem. (2018). https://doi.org/10.1039/c7nj04517d

    Article  PubMed  PubMed Central  Google Scholar 

  21. W. Zhang, X.W. He, Y. Chen, W.Y. Li, Y.K. Zhang, Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens. Bioelectron. 26, 2553–2558 (2011). https://doi.org/10.1016/j.bios.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  22. D.P. Malliaros, S.S. Wong, A.H.B. Wu, J. Campbell, H. Leonard, S. Houser, M. Berg, T. Gornet, C. Brown, Y.J. Feng, Quantitative determination of theophylline by an automated chemiluminescent immunoassay in serum and plasma: comparison to other methods of analysis. Ther. Drug Monit. 19, 224–229 (1997)

    Article  CAS  Google Scholar 

  23. M. Li, Y. Sato, S. Nishizawa, T. Seino, K. Nakamura, N. Teramae, 2-aminopurine-modified abasic-site-containing duplex DNA for highly selective detection of theophylline. J. Am. Chem. Soc. 131, 2448–2449 (2009). https://doi.org/10.1021/ja8095625

    Article  CAS  PubMed  Google Scholar 

  24. K. Ling, H. Jiang, Y. Li, X. Tao, C. Qiu, F.-R. Li, A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosens. Bioelectron. 86, 8–13 (2016)

    Article  CAS  Google Scholar 

  25. K.S. Park, S.S. Oh, H.T. Soh, H.G. Park, Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline. Nanoscale 6, 9977–9982 (2014)

    Article  CAS  Google Scholar 

  26. Y. Sato, Y. Zhang, S. Nishizawa, T. Seino, K. Nakamura, M. Li, N. Teramae, Competitive assay for theophylline based on an abasic site-containing DNA duplex aptamer and a fluorescent ligand. Chem. Eur. J. 18, 12719–12724 (2012)

    Article  CAS  Google Scholar 

  27. C. Frauendorf, A. Jäschke, Detection of small organic analytes by fluorescing molecular switches. Bioorganic Med. Chem. 9, 2521–2524 (2001). https://doi.org/10.1016/S0968-0896(01)00027-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ensafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakery, M., Ensafi, A.A. & Rezaei, B. Detection of theophylline using molecularly imprinted polymers based on thioglycolic acid-modified CdTe quantum dots. J IRAN CHEM SOC 17, 601–608 (2020). https://doi.org/10.1007/s13738-019-01798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01798-w

Keywords

Navigation