Skip to main content
Log in

Multi-functional MnO2-doped Fe3O4 nanoparticles as an artificial enzyme for the colorimetric detection of bacteria

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The authors describe a rapid enzyme-free colorimetric assay for food- and water-borne pathogens by using the multi-functional MnO2-doped magnetic ferrite nanoparticles (MCDs-MnO2 NPs). These nanoparticles not only can recognize, absorb, and separate the analyte from the matrix efficiently but also can directly catalyze the oxidation of TMB into a blue colored product without H2O2. In the presence of target, the nanoparticles preferentially bind to the target surface and the interaction between nanoparticles and TMB can be blocked, providing turn-off sensing of bacteria. By combining the superior capture efficiency of magnetic beads with the high catalytic activity of the enzyme mimic, the turn-off colorimetric assay can detect the gram-positive bacterium and the gram-negative bacterium by the naked eye at a low detection limit (102 cfu mL−1) with a wide line arrange from 10 to 106 cfu mL−1. With the advantage of simplicity, sensitivity, and specificity, this proposed approach showed promise in rapid instrumental and on-site visual detection of bacteria for determination of water contamination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Law JW, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2015;5:770–88.

    Article  Google Scholar 

  2. Cho IH, Ku S. Current technical approaches for the early detection of foodborne pathogens: challenges and opportunities. Int J Mol Sci. 2017;18(10):2078–100.

    Article  Google Scholar 

  3. Díaz-Amaya S, Zhao M, Lin LK, Ostos C, Allebach JP, Chiu GT. Inkjet printed nanopatterned aptamer-based sensors for improved optical detection of foodborne pathogens. Small. 2019;15(24):1805342.

    Article  Google Scholar 

  4. Borgohain R, Baruah S. Development and testing of ZnO nanorods based biosensor on model Gram-positive and gram-negative bacteria. IEEE Sensors J. 2017;17(9):2649–53.

    Article  CAS  Google Scholar 

  5. Florentin A, Lizon J, Asensio E, Forin J, Rivier A. Water and surface microbiologic quality of point-of-use water filters: a comparative study. Am J Infect Control. 2016;44(9):1061–2.

    Article  Google Scholar 

  6. Adkins JA, Boehle K, Friend C, Chamberlain B, Bisha B, Henry CS. Colorimetric and electrochemical bacteria detection using printed paper-and transparency-based analytic devices. Anal Chem. 2017;89(6):3613–21.

    Article  CAS  Google Scholar 

  7. Altintas Z, Akgun M, Kokturk G, Uludag Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens Bioelectron. 2018;100:541–8.

    Article  CAS  Google Scholar 

  8. Lazcka O, Del Campo FJ, Muñoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22(7):1205–17.

    Article  CAS  Google Scholar 

  9. Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew Chem Int Ed Engl. 2015;54(17):5132–6.

    Article  CAS  Google Scholar 

  10. Wang W, Liu L, Song S, Tang L, Kuang H, Xu C. A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. Sensors (Basel). 2015;15(3):5281–92.

    Article  CAS  Google Scholar 

  11. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 2011;28(5):848–61.

    Article  CAS  Google Scholar 

  12. Liu P, Han L, Wang F, Li X, Petrenko VA, Liu A. Sensitive colorimetric immunoassay of Vibrio parahaemolyticus based on specific nonapeptide probe screening from a phage display library conjugated with MnO2 nanosheets with peroxidase-like activity. Nanoscale. 2018;10(6):2825–33.

    Article  CAS  Google Scholar 

  13. Zhang X, Mao X, Li S, Dong W, Huang Y. Tuning the oxidase mimics activity of manganese oxides via control of their growth conditions for highly sensitive detection of glutathione. Sensor Actuators B Chem. 2018;258:80–7.

    Article  CAS  Google Scholar 

  14. Liu J, Meng L, Fei Z, Dyson PJ, Zhang L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens Bioelectron. 2018;121:159–65.

    Article  CAS  Google Scholar 

  15. Ouyang H, Lu Q, Wang W, Song Y, Tu X, Zhu C. Dual-readout immunochromatographic assay by utilizing MnO2 nanoflowers as the unique colorimetric/chemiluminescent probe. Anal Chem. 2018;90(8):5147–52.

    Article  CAS  Google Scholar 

  16. Gong J, Han X, Zhu X, Guan Z. Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-β-cyclodextrin for selective capacitive sensing of acephatemet. Biosens Bioelectron. 2014;61:379–85.

    Article  CAS  Google Scholar 

  17. Stobiecka M, Chalupa A. Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled-shell gating. J Phys Chem B. 2015;119(41):13227–35.

    Article  CAS  Google Scholar 

  18. Bhaisare ML, Gedda G, Khan MS, Wu HF. Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Anal Chim Acta. 2016;920:63–71.

    Article  CAS  Google Scholar 

  19. Xiong Y, Chen S, Ye F, Su L, Zhang C, Shen S. Preparation of magnetic core–shell nanoflower Fe3O4@MnO2 as reusable oxidase mimetics for colorimetric detection of phenol. Anal Methods. 2015;7(4):1300–6.

    Article  CAS  Google Scholar 

  20. Wang Q, Pang H, Dong Y, Chi Y, Fu F. Colorimetric determination of glutathione by using a nanohybrid composed of manganese dioxide and carbon dots. Mikrochim Acta. 2018;185(6):291.

    Article  Google Scholar 

  21. Abdelhamid HN, Wu HF. Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B. 2013;1(44):6094–106.

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (Grant Nos. 81602895, 81602894, and 81872668), the Education Department of Jilin Province (JJKH20180240KJ), Health Commission of Jilin Province (2018Q033), and Norman Bethune Health Science Center of Jilin University (2018A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, C., Zhao, W. et al. Multi-functional MnO2-doped Fe3O4 nanoparticles as an artificial enzyme for the colorimetric detection of bacteria. Anal Bioanal Chem 412, 3135–3140 (2020). https://doi.org/10.1007/s00216-020-02563-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02563-2

Keywords

Navigation