Skip to main content
Log in

APTES Functionalized Iron Oxide–Silver Magnetic Hetero-Nanocomposites for Selective Capture and Rapid Removal of Salmonella enteritidis from Aqueous Solution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnetic nanomaterials, as a promising platform for the fast and sensitive detection of bacterial pathogens, have attracted increasing interest from researchers in recent years. In this work, by utilizing a two-step synthetic technique consisting of co-precipitation and subsequent hydrothermal reaction, followed by functionalization steps with (3-aminopropyl)triethoxysilane (APTES) and the antibody against Salmonella enteritidis, antibody-conjugated Fe3O4–Ag@APTES hetero-nanocomposites were successfully prepared. Due to the specific antibody, the developed Fe3O4–Ag@APTES@SE-Ab conjugates are capable of selectively capturing S. enteritidis at a low concentration of about 101 CFU/mL. Moreover, the prepared magnetic conjugates also revealed that the S. enteritidis could be rapidly removed from water solution in 20 min by using an external magnetic field with a removal efficiency obtained of ∼ 91.36%. These results indicated that the Fe3O4–Ag@APTES@SE-Ab conjugates are promising for the rapid selective capture and removal of bacterial pathogens from aqueous environments, and can be used for improving the detection quality of pathogens in water samples using immunosensor-based diagnostic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Healh Organization Fact Sheets: Food Safety. (WHO, 2015), http://www.who.int/mediacentre/factsheets/ fs399/en/. Accessed 30 January 2018.

  2. F. Hossain, O.J. Perales-Perez, S. Hwang, and F. Roman, Sci. Total Environ. 466, 1047 (2014).

    Article  Google Scholar 

  3. C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, and A. Bhatnagar, Chem. Eng. J. 306, 1116 (2016).

    Article  Google Scholar 

  4. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, and M. Mahmoudi, Trends Biotechnol. 30, 499 (2012).

    Article  Google Scholar 

  5. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, V.M. Jiménez-Pérez, B.O. Pérez, and B.M. Flores, RSC Adv. 2, 9325 (2012).

    Article  Google Scholar 

  6. R.A. Bohara and S.H. Pawar, Appl. Biochem. Biotechnol. 176, 1044 (2015).

    Article  Google Scholar 

  7. M. Varshney, L. Yang, X.-L. Su, and Y. Li, J. Food Protect. 68, 1804 (2005).

    Article  Google Scholar 

  8. V. Kumar, G. Nath, R.K. Kotnala, P.S. Saxena, and A. Srivastava, RSC Adv. 3, 14634 (2013).

    Article  Google Scholar 

  9. Y.J. Sung, H.-J. Suk, H.Y. Sung, T. Li, H. Poo, and M.-G. Kim, Biosens. Bioelectron. 43, 432 (2013).

    Article  Google Scholar 

  10. W. Lee, D. Kwon, B. Chung, G.Y. Jung, A. Au, A. Folch, and S. Jeon, Anal. Chem. 86, 6683 (2014).

    Article  Google Scholar 

  11. T.Q. Huy, P.V. Chung, N.T. Thuy, C. Blanco-Andujar, and N.T.K. Thanh, Faraday Discuss. 175, 73 (2015).

    Article  Google Scholar 

  12. W. Lee, D. Kwon, W. Choi, G.Y. Jung, A.K. Au, A. Folch, and S. Jeon, Sci. Rep. 5, 7717 (2015).

    Article  Google Scholar 

  13. A.J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M.G. Bergeron, and B. Simard, ACS Nano 2, 1777 (2008).

    Article  Google Scholar 

  14. L. Chen, F.S. Razavi, A. Mumin, X. Guo, T.-K. Sham, and J. Zhang, RSC Adv. 3, 2390 (2013).

    Article  Google Scholar 

  15. X. Meng, G. Yang, F. Li, T. Liang, W. Lai and H. Xu, ACS Appl. Mater. Interfaces (2017).

  16. K. El-Boubbou, C. Gruden, and X. Huang, J. Am. Chem. Soc. 129, 13392 (2007).

    Article  Google Scholar 

  17. J.-C. Liu, P.-J. Tsai, Y.C. Lee, and Y.-C. Chen, Anal. Chem. 80, 5425 (2008).

    Article  Google Scholar 

  18. H.J. Chung, C.M. Castro, H. Im, H. Lee, and R. Weissleder, Nat. Nanotechnol. 8, 369 (2013).

    Article  Google Scholar 

  19. X. Jia, I. Ahmad, R. Yang, and C. Wang, J. Mater. Chem. B 5, 2459 (2017).

    Article  Google Scholar 

  20. Z. Wei, Z. Zhou, M. Yang, C. Lin, Z. Zhao, D. Huang, Z. Chen, and J. Gao, J. Mater. Chem. 21, 16344 (2011).

    Article  Google Scholar 

  21. J. Malakootikhah, A.H. Rezayan, B. Negahdari, S. Nasseri, and H. Rastegar, Carbohydr. Polym. 170, 190 (2017).

    Article  Google Scholar 

  22. A.M. Chockalingam, H.K.R.R. Babu, R. Chittor, and J.P. Tiwari, J. Nanobiotechnol. 8, 30 (2010).

    Article  Google Scholar 

  23. M.J. Osborn, Annu. Rev. Biochem. 38, 501 (1969).

    Article  Google Scholar 

  24. Y.-F. Huang, Y.-F. Wang, and X.-P. Yan, Environ. Sci. Technol. 44, 7908 (2010).

    Article  Google Scholar 

  25. P.M. Reddy, K.-C. Chang, Z.-J. Liu, C.-T. Chen, and Y.-P. Ho, J. Biomed. Nanotechnol. 10, 1429 (2014).

    Article  Google Scholar 

  26. G. Chen, Z. Li, X. Wang, L. Xie, Q. Qi, and W. Fang, Mater. Lett. 134, 290 (2014).

    Article  Google Scholar 

  27. G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz, and J. Economy, Mater. Lett. 65, 1191 (2011).

    Article  Google Scholar 

  28. W. Fang, H. Zhang, X. Wang, W. Wei, Y. Shen, J. Yu, J. Liang, J. Zheng, and Y. Shen, New J. Chem. 41, 10155 (2017).

    Article  Google Scholar 

  29. V.T. Trang, N.V. Quy, T.Q. Huy, N.T. Thuy, D.Q. Tri, N.D. Cuong, P.A. Tuan, H. Van Tuan, A.-T. Le, and V.N. Phan, J. Electron. Mater. 46, 3381 (2017).

    Article  Google Scholar 

  30. R.A. Bini, R.F.C. Marques, F.J. Santos, J.A. Chaker, and M. Jafelicci, J. Magn. Magn. Mater. 324, 534 (2012).

    Article  Google Scholar 

  31. J. Ma, K. Wang, and M. Zhan, ACS Appl. Mater. Interfaces 7, 16027 (2015).

    Article  Google Scholar 

  32. M. Ma, Y. Zhang, W. Yu, H.-Y. Shen, H.-Q. Zhang, and N. Gu, Colloids Surf. A Physicochem. Eng. Asp. 212, 219 (2003).

    Article  Google Scholar 

  33. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, and H.E. Toma, J. Magn. Magn. Mater. 279, 210 (2004).

    Article  Google Scholar 

  34. M. Sahoo, S. Singha, and K.M. Parida, New J. Chem. 35, 2503 (2011).

    Article  Google Scholar 

  35. V. Vahedi and P. Pasbakhsh, Polym Test. 39, 101 (2014).

    Article  Google Scholar 

  36. J. Park, M.K. Yu, Y.Y. Jeong, J.W. Kim, K. Lee, V.N. Phan, and S. Jon, J. Mater. Chem. 19, 6412 (2009).

    Article  Google Scholar 

  37. W. Wu, Z. Wu, T. Yu, C. Jiang and W.-S. Kim, Sci. Technol. Adv. Mater. 16, 023501 (43 pp) (2015).

  38. A. Fargašová, A. Balzerová, R. Prucek, M.H. Sedláková, K. Bogdanová, J. Gallo, M. Kolář, V. Ranc, and R. Zbořil, Anal. Chem. 89, 6598 (2017).

    Article  Google Scholar 

  39. S. Zhan, D. Zhu, S. Ma, W. Yu, Y. Jia, Y. Li, H. Yu, and Z. Shen, ACS Appl. Mater. Interfaces 7, 4290 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2015.20. Also, the technical supports for biological measurements at National Institute of Hygiene and Epidemiology (NIHE) are acknowledged. The authors thank the Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) for the use of their VSM instrument.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vu Ngoc Phan or Anh-Tuan Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trang, V.T., Dinh, N.X., Lan, H. et al. APTES Functionalized Iron Oxide–Silver Magnetic Hetero-Nanocomposites for Selective Capture and Rapid Removal of Salmonella enteritidis from Aqueous Solution. J. Electron. Mater. 47, 2851–2860 (2018). https://doi.org/10.1007/s11664-018-6135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6135-7

Keywords

Navigation