Skip to main content
Log in

Ionic liquids functionalized Fe3O4-based colorimetric biosensor for rapid determination of ochratoxin A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A stainless steel mesh (SSM) with the feature of flexibility was employed as the colorimetric biosensor substrate, and aptamer was bond onto the surface of the SSM. Through the cross-linking of ionic liquids (ILs), AuPt nanoparticles were deposited  onto the surface of Fe3O4 material to obtain a magnetic nanozyme with high peroxidase catalytic activity and rapid color change. Through the competing interaction of OTA and cDNA with aptamer, AuPt@IL@Fe3O4 signal probe was separated to catalyze the 3,3′,5,5′-tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) system to observe the color by bare eye and record the absorbance at 652 nm using a UV-spectrophotometer. Through the study of the catalytic properties on the basis of the Michaelis equation, AuPt@IL@Fe3O4 nanozyme presented a Vmax of 3.85 × 10−8 M s−1 and Km of 0.01 mM. Under the optimized conditions, the linear range of the colorimetric biosensor towards OTA was 5–100 ng mL−1, and the detection limit was 0.078 ng mL–1. This biosensor was applied to beer and corn samples with recoveries of 70.4–102.6% and 93.3–104.7%, respectively. Results showed that this sensor is a portable, rapid, economical, sensitive visual sensing platform towards mycotoxin in real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen X, Gao D, Sun F, Li Z, Wang Y, Qiu C, He K, Wang J (2022) Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 414(9):2953–2969. https://doi.org/10.1007/s00216-022-03960-5

    Article  CAS  PubMed  Google Scholar 

  2. Zhu W, Li L, Zhou Z, Yang X, Hao N, Guo Y, Wang K (2020) A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem 319:126544. https://doi.org/10.1016/j.foodchem.2020.126544

    Article  CAS  PubMed  Google Scholar 

  3. Suo Z, Liang X, Jin H, He B, Wei M (2021) A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB1. Anal Bioanal Chem 413(30):7587–7595. https://doi.org/10.1007/s00216-021-03723-8

    Article  CAS  PubMed  Google Scholar 

  4. Huang R, Xiong LL, Chai HH, Fu JJ, Lu Z, Yu L (2019) Sensitive colorimetric detection of ochratoxin A by a dual-functional Au/Fe3O4 nanohybrid-based aptasensor. RSC Adv 9(66):38590–38596. https://doi.org/10.1039/c9ra07899a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin X, Li C, He C, Zhou Y, Wang Z, Duan N, Wu S (2021) Upconversion nanoparticles assembled with gold nanourchins as luminescence and surface-enhanced raman scattering dual-mode aptasensors for detection of Ochratoxin A. ACS Appl Nano Mater 4(8):8231–8240. https://doi.org/10.1021/acsanm.1c01421

    Article  CAS  Google Scholar 

  6. Jiang L, Han Y, Li Y, Li Z, Zhang S, Zhu X, Liu Z, Chen Y, Fernandez-Garcia S, Tang Y, Chen X (2022) Split-type assay for wide-range sensitive sensing of ochratoxin A with praseodymia nanorods. Colloids Surf A Physicochem Eng Asp 652:129804. https://doi.org/10.1016/j.colsurfa.2022.129804

    Article  CAS  Google Scholar 

  7. Zhang ZH, Zhu M, Wang F, Meng H, Feng L (2021) Electrochemical/visual dual-readout aptasensor for ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosens Bioelectron 180:113146. https://doi.org/10.1016/j.bios.2021.113146

    Article  CAS  PubMed  Google Scholar 

  8. Tian F, Zhou J, Jiao B, He Y (2019) A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. Nanoscale 11(19):9547–9555. https://doi.org/10.1039/c9nr02872b

    Article  CAS  PubMed  Google Scholar 

  9. Setlem K, Mondal B, Shylaja R, Parida M (2020) Dual aptamer-DNAzyme based colorimetric assay for the detection of AFB1 from food and environmental samples. Anal Biochem 608:113874. https://doi.org/10.1016/j.ab.2020.113874

    Article  CAS  PubMed  Google Scholar 

  10. Lv X, Frahat Foda M, He J, Zhou J, Cai J (2023) Robust and facile label-free colorimetric aptasensor for ochratoxin A detection using aptamer-enhanced oxidase-like activity of MnO2 nanoflowers. Food Chem 401:134144. https://doi.org/10.1016/j.foodchem.2022.134144

    Article  CAS  PubMed  Google Scholar 

  11. Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C (2016) Electrochemical biosensors for fast detection of food contaminants – trends and perspective. TrAC Trends Anal Chem 79:80–87. https://doi.org/10.1016/j.trac.2015.12.017

    Article  CAS  Google Scholar 

  12. Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C (2020) Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal Chem 92(19):13518–13524. https://doi.org/10.1021/acs.analchem.0c02982

    Article  CAS  PubMed  Google Scholar 

  13. Fang Z, Zhou X, Wang X, Shi X (2023) Development of a 3-plex droplet digital PCR for identification and absolute quantification of salmonella and its two important serovars in various food samples. Food Control 145:109465. https://doi.org/10.1016/j.foodcont.2022.109465

    Article  CAS  Google Scholar 

  14. Long L, Liu J, Lu K, Zhang T, Xie Y, Ji Y, Wu X (2018) Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. J Nanobiotechnology 16(1):46. https://doi.org/10.1186/s12951-018-0371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan P, Deng Z, Qiu P, Yin Z, Bai Y, Su Z, He J (2023) Bimetallic metal−organic framework nanorods with peroxidase mimicking activity for selective colorimetric detection of salmonella typhimurium in food. Food Control 144:109357. https://doi.org/10.1016/j.foodcont.2022.109357

    Article  CAS  Google Scholar 

  16. Zhu D, Liu B, Wei G (2021) Two-dimensional material-based colorimetric biosensors: a review. Biosensors 11(8):259. https://doi.org/10.3390/bios11080259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Dong S, Gai P, Duan R, Li F (2016) Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens Bioelectron 82:49–54. https://doi.org/10.1016/j.bios.2016.03.055

    Article  CAS  PubMed  Google Scholar 

  18. Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR, Mohamadnejad J (2015) Aptamer-based colorimetric and chemiluminescence detection of Aflatoxin B1 in foods samples. Acta Chim Slov 62:721–728. https://doi.org/10.17344/acsi.2015.1358

    Article  CAS  PubMed  Google Scholar 

  19. Tian F, Zhou J, Fu R, Cui Y, Zhao Q, Jiao B, He Y (2020) Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem 320:126607. https://doi.org/10.1016/j.foodchem.2020.126607

    Article  CAS  PubMed  Google Scholar 

  20. Ali MH, Elsherbiny ME, Emara M (2019) Updates on aptamer research. Int J Mol Sci 20(10):2511. https://doi.org/10.3390/ijms20102511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Wang L, Zou X, Wu S, Pan J, Li X, Niu X (2019) Highly sensitive colorimetric detection of arsenite based on reassembly-induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme. Sensors Actuators B Chem 298:126876. https://doi.org/10.1016/j.snb.2019.126876

    Article  CAS  Google Scholar 

  22. Gai P, Pu L, Wang C, Zhu D, Li F (2023) CeO2@NC nanozyme with robust dephosphorylation ability of phosphotriester: a simple colorimetric assay for rapid and selective detection of paraoxon. Biosens Bioelectron 220:114841. https://doi.org/10.1016/j.bios.2022.114841

    Article  CAS  PubMed  Google Scholar 

  23. Wan Y, Zhao J, Deng X, Chen J, Xi F, Wang X (2021) Colorimetric and fluorescent dual-modality sensing platform based on fluorescent nanozyme. Front Chem 9:774486. https://doi.org/10.3389/fchem.2021.774486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu L, Zhou S, Wang G, Yun Y, Liu G, Zhang W (2021) Nanozyme applications: a glimpse of insight in food safety. Front Bioeng Biotechnol 9:727886. https://doi.org/10.3389/fbioe.2021.727886

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chang J, Li H, Hou T, Duan W, Li F (2018) Paper-based fluorescent sensor via aggregation induced emission fluorogen for facile and sensitive visual detection of hydrogen peroxide and glucose. Biosens Bioelectron 104:152–157. https://doi.org/10.1016/j.bios.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  26. Xu Y, Zhang Y, Song X, Liu H (2019) Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor. Funct Mater Lett 12(02):1950019. https://doi.org/10.1142/s179360471950019x

    Article  CAS  Google Scholar 

  27. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  28. Vojoudi H, Ghasemi JB, Hajihosseinloo A, Bastan B, Badiei A (2021) One-pot synthesis of hematite-alumina hollow sphere composite by ultrasonic spray pyrolysis technique with high adsorption capacity toward PAHs. Adv Powder Technol 32(4):1060–1069. https://doi.org/10.1016/j.apt.2021.02.015

    Article  CAS  Google Scholar 

  29. Wang Z, Ma H, Wang F, Li M, Zhang L, Xu X (2016) Controllable synthesis and magnetic properties of monodisperse Fe3O4 nanoparticles. Chin Phys Lett 33(10):107501. https://doi.org/10.1088/0256-307x/33/10/107501

    Article  CAS  Google Scholar 

  30. Feng X, Fu H, Bai Z, Li P, Song X, Hu X (2022) Colorimetric detection of glucose by a hybrid nanomaterial based on amplified peroxidase-like activity of ferrosoferric oxide modified with gold–platinum heterodimer. New J Chem 46(1):239–249. https://doi.org/10.1039/d1nj04491e

    Article  CAS  Google Scholar 

  31. Xu C, Yang Z, Yan H, Li J, Yu H, Zhang L, Shu J (2022) Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage. Proc Natl Acad Sci U S A 119(12):e2118675119. https://doi.org/10.1073/pnas.2118675119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu L, Chang J, Zhuang X, Li H, Hou T, Li F (2022) Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal Chem 94(8):3669–3676. https://doi.org/10.1021/acs.analchem.1c05300

    Article  CAS  PubMed  Google Scholar 

  33. Guo D, Huang Q, Zhao R, Guo W, Fan K, Han Z, Zhao Z, Nie D (2023) MIL-101(Cr)@Fe3O4 nanocomposites as magnetic solid-phase extraction adsorbent for the determination of multiple mycotoxins in agricultural products by ultra-high-performance liquid chromatography tandem mass spectrometry. Food Control 146:109540. https://doi.org/10.1016/j.foodcont.2022.109540

    Article  CAS  Google Scholar 

  34. Luo S, Liu Y, Rao H, Wang Y, Wang X (2017) Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal Biochem 538:26–33. https://doi.org/10.1016/j.ab.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  35. Vojoudi H, Bastan B, Ghasemi JB, Badiei A (2019) An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples. Anal Bioanal Chem 411(21):5593–5603. https://doi.org/10.1007/s00216-019-01940-w

    Article  CAS  PubMed  Google Scholar 

  36. Modheji M, Emadi H, Vojoudi H (2020) Efficient pre-concentration of As(III) in food samples using guanidine-modified magnetic mesoporous silica. J Porous Mater 27(4):971–978. https://doi.org/10.1007/s10934-020-00873-5

    Article  CAS  Google Scholar 

  37. Zhu Q, Maeno S, Sasaki M, Miyamoto T, Fukushima M (2015) Monopersulfate oxidation of 2,4,6-tribromophenol using an iron(III)-tetrakis(p-sulfonatephenyl)porphyrin catalyst supported on an ionic liquid functionalized Fe3O4 coated with silica. Appl Catal B Environ 163:459–466. https://doi.org/10.1016/j.apcatb.2014.08.035

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31901766), financial support from the Talents of High-Level Scientific Research Foundation, Qingdao Agricultural University (No.1119014), postgraduate innovation gram of Qingdao Agricultural University (No. QNYCX22096), Rural Revitalization Science and Technology Innovation Plan Project of Shandong Province (2022TZXD0031), and Science & Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta (2022SZX26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiudan Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 652 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xin, S., Tan, X. et al. Ionic liquids functionalized Fe3O4-based colorimetric biosensor for rapid determination of ochratoxin A. Microchim Acta 190, 364 (2023). https://doi.org/10.1007/s00604-023-05943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05943-4

Keywords

Navigation