Skip to main content
Log in

Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A validated liquid chromatography–tandem mass spectrometry method was developed for the simultaneous determination of d- and l-amino acids in human serum. Under the optimum conditions, except for dl-proline, l-glutamine, and d-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for l-amino acids (including glycine) and d-amino acids were 5–56.25 μM and 0.625–500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from −12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of d- and l-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of l-arginine, l-isoleucine, l-aspartate, l-tryptophan, l-alanine, l-methionine, l-serine, glycine, l-valine, l-leucine, l-phenylalanine, l-threonine, d-isoleucine, d-alanine, d-glutamate, d-glutamine, d-methionine, and d-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). d-Glutamate and d-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research.

Simultaneous determination of d- and l-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klupczynska A, Derezinski P, Dyszkiewicz W, Pawlak K, Kasprzyk M, Kokot ZJ. Evaluation of serum amino acid profiles' utility in non-small cell lung cancer detection in Polish population. Lung Cancer. 2016;100:71–6. https://doi.org/10.1016/j.lungcan.2016.04.008.

    Article  Google Scholar 

  2. Mustafa A, Gupta S, Hudes GR, Egleston BL, Uzzo RG, Kruger WD. Serum amino acid levels as a biomarker for renal cell carcinoma. J Urol. 2011;186(4):1206–12. https://doi.org/10.1016/j.juro.2011.05.085.

    Article  CAS  Google Scholar 

  3. Fitian AI, Nelson DR, Liu C, Xu Y, Ararat M, Cabrera R. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int. 2014;34(9):1428–44. https://doi.org/10.1111/liv.12541.

    Article  CAS  Google Scholar 

  4. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry. 2003;60(6):572–6. https://doi.org/10.1001/archpsyc.60.6.572.

    Article  CAS  Google Scholar 

  5. Morikawa A, Hamase K, Zaitsu K. Determination of D-alanine in the rat central nervous system and periphery using column-switching high-performance liquid chromatography. Anal Biochem. 2003;312(1):66–72.

    Article  CAS  Google Scholar 

  6. Rodriguez-Crespo I. d-Amino acids in the brain: pyridoxal phosphate-dependent amino acid racemases and the physiology of d-serine. FEBS J. 2008;275(14):3513. https://doi.org/10.1111/j.1742-4658.2008.06514.x.

    Article  CAS  Google Scholar 

  7. Yamanaka M, Miyoshi Y, Ohide H, Hamase K, Konno R. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids. 2012;43(5):1811–21. https://doi.org/10.1007/s00726-012-1384-x.

    Article  CAS  Google Scholar 

  8. Billard JM. d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids. 2012;43(5):1851–60. https://doi.org/10.1007/s00726-012-1346-3.

    Article  CAS  Google Scholar 

  9. Kiriyama Y, Nochi H. d-Amino acids in the nervous and endocrine systems. Scientifica (Cairo). 2016;2016:6494621. https://doi.org/10.1155/2016/6494621.

    Google Scholar 

  10. Nagata Y, Sato T, Enomoto N, Ishii Y, Sasaki K, Yamada T. High concentrations of D-amino acids in human gastric juice. Amino Acids. 2007;32(1):137–40. https://doi.org/10.1007/s00726-006-0262-9.

    Article  CAS  Google Scholar 

  11. Kimura T, Hamase K, Miyoshi Y, Yamamoto R, Yasuda K, Mita M, et al. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci Rep. 2016;6:26137. https://doi.org/10.1038/srep26137.

    Article  CAS  Google Scholar 

  12. Lorenzo MP, Dudzik D, Varas E, Gibellini M, Skotnicki M, Zorawski M, et al. Optimization and validation of a chiral GC-MS method for the determination of free D-amino acids ratio in human urine: application to a gestational diabetes mellitus study. J Pharm Biomed Anal. 2015;107:480–7. https://doi.org/10.1016/j.jpba.2015.01.015.

    Article  CAS  Google Scholar 

  13. Pietrogrande MC. Enantioselective separation of amino acids as biomarkers indicating life in extraterrestrial environments. Anal Bioanal Chem. 2013;405(25):7931–40. https://doi.org/10.1007/s00216-013-6915-0.

    Article  CAS  Google Scholar 

  14. Lorenzo MP, Villasenor A, Ramamoorthy A, Garcia A. Optimization and validation of a capillary electrophoresis laser-induced fluorescence method for amino acids determination in human plasma: application to bipolar disorder study. Electrophoresis. 2013;34(11):1701–9. https://doi.org/10.1002/elps.201200632.

    Article  CAS  Google Scholar 

  15. Sanchez-Hernandez L, Serra NS, Marina ML, Crego AL. Enantiomeric separation of free L- and D-amino acids in hydrolyzed protein fertilizers by capillary electrophoresis tandem mass spectrometry. J Agric Food Chem. 2013;61(21):5022–30. https://doi.org/10.1021/jf4013345.

    Article  CAS  Google Scholar 

  16. Karakawa S, Shimbo K, Yamada N, Mizukoshi T, Miyano H, Mita M, et al. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. J Pharm Biomed Anal. 2015;115:123–9. https://doi.org/10.1016/j.jpba.2015.05.024.

    Article  CAS  Google Scholar 

  17. Sakamoto T, Kuwabara R, Takahashi S, Onozato M, Ichiba H, Iizuka H, et al. Determination of D-serine in human serum by LC-MS/MS using a triazole-bonded column after pre-column derivatization with (S)-4-(3-isothiocyanatopyrrolidin-1-yl)-7- (N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole. Anal Bioanal Chem. 2016;408(2):517–26. https://doi.org/10.1007/s00216-015-9119-y.

    Article  CAS  Google Scholar 

  18. Song Y, Liang F, Liu YM. Quantification of D-amino acids in the central nervous system of Aplysia californica by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(1):73–7. https://doi.org/10.1002/rcm.2803.

    Article  Google Scholar 

  19. Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman MC, Goldberg ME, et al. Development and validation of a sensitive LC-MS/MS method for the determination of D-serine in human plasma. J Pharm Biomed Anal. 2014;89:1–5. https://doi.org/10.1016/j.jpba.2013.10.028.

    Article  CAS  Google Scholar 

  20. Sugimoto H, Kakehi M, Jinno F. Bioanalytical method for the simultaneous determination of D- and L-serine in human plasma by LC/MS/MS. Anal Biochem. 2015;487:38–44. https://doi.org/10.1016/j.ab.2015.07.004.

    Article  CAS  Google Scholar 

  21. Sugimoto H, Kakehi M, Jinno F. Method development for the determination of D- and L-isomers of leucine in human plasma by high-performance liquid chromatography tandem mass spectrometry and its application to animal plasma samples. Anal Bioanal Chem. 2015;407(26):7889–98. https://doi.org/10.1007/s00216-015-8999-1.

    Article  CAS  Google Scholar 

  22. Visser WF, Verhoeven-Duif NM, Ophoff R, Bakker S, Klomp LW, Berger R, et al. A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of D-amino acids in body fluids. J Chromatogr A. 2011;1218(40):7130–6. https://doi.org/10.1016/j.chroma.2011.07.087.

    Article  CAS  Google Scholar 

  23. Szoko E, Vincze I, Tabi T. Chiral separations for d-amino acid analysis in biological samples. J Pharm Biomed Anal. 2016;130:100–9. https://doi.org/10.1016/j.jpba.2016.06.054.

    Article  CAS  Google Scholar 

  24. Aviles-Moreno JR, Quesada-Moreno MM, Lopez-Gonzalez JJ, Martinez-Haya B. Chiral recognition of amino acid enantiomers by a crown ether: chiroptical IR-VCD response and computational study. J Phys Chem B. 2013;117(32):9362–70. https://doi.org/10.1021/jp405027s.

    Article  CAS  Google Scholar 

  25. Hyun MH. Development of HPLC chiral stationary phases based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid and their applications. Chirality. 2015;27(9):576–88. https://doi.org/10.1002/chir.22484.

    Article  CAS  Google Scholar 

  26. Hyun MH. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J Chromatogr A. 2016;1467:19–32. https://doi.org/10.1016/j.chroma.2016.07.049.

    Article  CAS  Google Scholar 

  27. Konya Y, Bamba T, Fukusaki E. Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng. 2016;121(3):349–53. https://doi.org/10.1016/j.jbiosc.2015.06.017.

    Article  CAS  Google Scholar 

  28. Konya Y, Taniguchi M, Fukusaki E. Novel high-throughput and widely-targeted liquid chromatography-time of flight mass spectrometry method for d-amino acids in foods. J Biosci Bioeng. 2017;123(1):126–33. https://doi.org/10.1016/j.jbiosc.2016.07.009.

    Article  CAS  Google Scholar 

  29. Nakano Y, Konya Y, Taniguchi M, Fukusaki E. Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. J Biosci Bioeng. 2017;123(1):134–8. https://doi.org/10.1016/j.jbiosc.2016.07.008.

    Article  CAS  Google Scholar 

  30. McGlynn KA, Petrick JL, London WT. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 2015;19(2):223–38. https://doi.org/10.1016/j.cld.2015.01.001.

    Article  Google Scholar 

  31. Stepien M, Duarte-Salles T, Fedirko V, Floegel A, Barupal DK, Rinaldi S, et al. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: Findings from a prospective cohort study. Int J Cancer. 2016;138(2):348–60. https://doi.org/10.1002/ijc.29718.

    Article  CAS  Google Scholar 

  32. Sato F, Hatano E, Kitamura K, Myomoto A, Fujiwara T, Takizawa S, et al. MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan Criteria. PLoS One. 2011;6(1):e16435. https://doi.org/10.1371/journal.pone.0016435.

    Article  CAS  Google Scholar 

  33. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet. 2003;361(9361):923–9. https://doi.org/10.1016/s0140-6736(03)12775-4.

    Article  CAS  Google Scholar 

  34. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27(9):1485–91. https://doi.org/10.1200/jco.2008.20.7753.

    Article  Google Scholar 

  35. Darpolor MM, Basu SS, Worth A, Nelson DS, Clarke-Katzenberg RH, Glickson JD, et al. The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and 13C-isotope based metabolomics. NMR Biomed. 2014;27(4):381–9. https://doi.org/10.1002/nbm.3072.

    Article  CAS  Google Scholar 

  36. Liu Y, Hong Z, Tan G, Dong X, Yang G, Zhao L, et al. NMR and LC/MS-based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int J Cancer. 2014;135(3):658–68. https://doi.org/10.1002/ijc.28706.

    Article  CAS  Google Scholar 

  37. Smith RJ. Nutrition and metabolism in hepatocellular carcinoma. Hepatobiliary Surg Nutr. 2013;2(2):89–96. https://doi.org/10.3978/j.issn.2304-3881.2012.11.02.

    Google Scholar 

  38. Zhou L, Liao Y, Yin P, Zeng Z, Li J, Lu X, et al. Metabolic profiling study of early and late recurrence of hepatocellular carcinoma based on liquid chromatography-mass spectrometry. J Chromatogr B. 2014;966:163–70. https://doi.org/10.1016/j.jchromb.2014.01.057.

    Article  CAS  Google Scholar 

  39. Ye G, Zhu B, Yao Z, Yin P, Lu X, Kong H, et al. Analysis of urinary metabolic signatures of early hepatocellular carcinoma recurrence after surgical removal using gas chromatography-mass spectrometry. J Proteome Res. 2012;11(8):4361–72. https://doi.org/10.1021/pr300502v.

    Article  CAS  Google Scholar 

  40. Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, et al. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med. 2015;13:242. https://doi.org/10.1186/s12916-015-0462-9.

    Article  Google Scholar 

  41. Watanabe A, Higashi T, Sakata T, Nagashima H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer. 1984;54(9):1875–82.

    Article  CAS  Google Scholar 

  42. Nojiri S, Fujiwara K, Shinkai N, Iio E, Joh T. Effects of branched-chain amino acid supplementation after radiofrequency ablation for hepatocellular carcinoma: a randomized trial. Nutrition. 2017;33:20–7. https://doi.org/10.1016/j.nut.2016.07.013.

    Article  CAS  Google Scholar 

  43. Park JG, Tak WY, Park SY, Kweon YO, Jang SY, Lee YR, et al. Effects of branched-chain amino acids (BCAAs) on the progression of advanced liver disease: a Korean nationwide, multicenter, retrospective, observational, cohort study. Medicine (Baltimore). 2017;96(24):e6580. https://doi.org/10.1097/md.0000000000006580.

    Article  CAS  Google Scholar 

  44. Nishizaki T, Matsumata T, Taketomi A, Yamamoto K, Sugimachi K. Levels of amino acids in human hepatocellular carcinoma and adjacent liver tissue. Nutr Cancer. 1995;23(1):85–90. https://doi.org/10.1080/01635589509514364.

    Article  CAS  Google Scholar 

  45. Lee JC, Chen MJ, Chang CH, Tiai YF, Lin PW, Lai HS, et al. Plasma amino acid levels in patients with colorectal cancers and liver cirrhosis with hepatocellular carcinoma. Hepatogastroenterology. 2003;50(53):1269–73.

    CAS  Google Scholar 

  46. Fuchs SA, Berger R, Klomp LW, de Koning TJ. d-Amino acids in the central nervous system in health and disease. Mol Genet Metab. 2005;85(3):168–80. https://doi.org/10.1016/j.ymgme.2005.03.003.

    Article  CAS  Google Scholar 

  47. Wolosker H, Dumin E, Balan L, Foltyn VN. d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J. 2008;275(14):3514-3526. https://doi.org/10.1111/j.1742-4658.2008.06515.x.

  48. Kollipara S, Bende G, Agarwal N, Varshney B, Paliwal J. International guidelines for bioanalytical method validation: a comparison and discussion on current scenario. Chromatographia. 2011;73(3-4):201–17. https://doi.org/10.1007/s10337-010-1869-2.

    Article  CAS  Google Scholar 

  49. Wang X, Zhang A, Han Y, Wang P, Sun H, Song G, et al. Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol Cell Proteomics. 2012;11(8):370–80. https://doi.org/10.1074/mcp.M111.016006.

    Article  Google Scholar 

  50. He X, Zhong J, Wang S, Zhou Y, Wang L, Zhang Y, et al. Serum metabolomics differentiating pancreatic cancer from new-onset diabetes. Oncotarget. 2017;8(17):29116–24. https://doi.org/10.18632/oncotarget.16249.

    Google Scholar 

  51. Lu M, Kong X, Wang H, Huang G, Ye C, He Z. A novel microRNAs expression signature for hepatocellular carcinoma diagnosis and prognosis. Oncotarget. 2017;8(5):8775–84. https://doi.org/10.18632/oncotarget.14452.

    Article  Google Scholar 

  52. Sakamoto M. Early HCC: diagnosis and molecular markers. J Gastroenterol. 2009;44(Suppl 19):108–11. https://doi.org/10.1007/s00535-008-2245-y.

    Article  CAS  Google Scholar 

  53. Long J, Lang Z-W, Wang H-G, Wang T-L, Wang B-E, Liu S-Q. Glutamine synthetase as an early marker for hepatocellular carcinoma based on proteomic analysis of resected small hepatocellular carcinomas. Hepatobiliary Pancreat Dis Int. 2010;9(3):296–305.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the National Natural Science Foundation of China (no. 81101027), the Innovation Program of Shanghai Municipal Education Commission (no. 14YZ030), and the Shanghai Young Eastern Scholar Program (QD2015009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xie.

Ethics declarations

This study was approved by the ethics committees of Eastern Hepatobiliary Surgery Hospital and Changhai Hospital and was conducted in accordance with the guidelines of the World Medical Association’s Declaration of Helsinki. Informed consent was obtained from the individual participants who provided the blood samples.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Xie, M., Han, J. et al. Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal Bioanal Chem 410, 2517–2531 (2018). https://doi.org/10.1007/s00216-018-0883-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0883-3

Keywords

Navigation