Skip to main content

Advertisement

Log in

d-Amino acids in brain neurotransmission and synaptic plasticity

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Far from our initial view of d-amino acids as being limited to invertebrates, they are now considered active molecules at synapses of mammalian central and peripheral nervous systems, capable of modulating synaptic communication within neuronal networks. In particular, experimental data accumulated in the last few decades show that through the regulation of glutamatergic neurotransmission, d-serine influences the functional plasticity of cerebral circuitry throughout life. In addition, the modulation of NMDA-R-dependent signalling by d-aspartate has been demonstrated by pharmacological studies and after the targeted deletion of the d-aspartate-degrading enzyme. Considering the major contribution of the glutamatergic system to a wide range of neurological disorders such as schizophrenia, Alzheimer’s disease and amyotrophic lateral sclerosis, an improved understanding of the mechanisms of d-amino-acid-dependent neuromodulation will certainly offer new insights for the development of relevant strategies to treat these neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MM, Smith TD, Moga D, Gallagher M, Wang Y, Wolfe BB, Rapp PR, Morrison JH (2001) Hippocampal dependent learning ability correlates with N-methyl-d-aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats. J Comp Neurol 432(2):230–243

    PubMed  CAS  Google Scholar 

  • Baptista V, Varanda WA (2005) Glycine binding site of the synaptic NMDA receptor in subpostremal NTS neurons. J Neurophysiol 94(1):147–152

    PubMed  CAS  Google Scholar 

  • Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14(7):719–727

    PubMed  CAS  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389–399

    PubMed  CAS  Google Scholar 

  • Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 32(4):613–624

    Google Scholar 

  • Billard JM (2008) d-Serine signalling as a prominent determinant of neuronal–glial dialogue in the healthy and diseased brain. J Cell Mol Med 12(5B):1872–1884

    PubMed  CAS  Google Scholar 

  • Billups D, Attwell D (2003) Active release of glycine or d-serine saturates the glycine site of NMDA receptors at the cerebellar mossy fibre to granule cell synapse. Eur J Neurosci 18(11):2975–2980

    PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    PubMed  CAS  Google Scholar 

  • Boselli A, Piubelli L, Molla G, Pilone MS, Pollegioni L, Sacchi S (2007) Investigating the role of active site residues of Rhodotorula gracilis d-amino acid oxidase on its substrate specificity. Biochimie 89(3):360–368

    PubMed  CAS  Google Scholar 

  • Chapman DE, Keefe KA, Wilcox KS (2003) Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. J Neurophysiol 89(1):69–80

    PubMed  CAS  Google Scholar 

  • Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15(10):6498–6508

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18(2):54–56

    PubMed  CAS  Google Scholar 

  • Collins GG (1991) Pharmacological evidence that NMDA receptors contribute to mono- and di-synaptic potentials in slices of mouse olfactory cortex. Neuropharmacology 30(6):547–555

    PubMed  CAS  Google Scholar 

  • Corrigan JJ (1969) d-Amino acids in animals. Science 164(876):142–149

    PubMed  CAS  Google Scholar 

  • D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234

    PubMed  Google Scholar 

  • D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027

    PubMed  Google Scholar 

  • Daniels BA, Baldridge WH (2012) d-Serine enhancement of NMDA receptor-mediated calcium increases in rat retinal ganglion cells. J Neurochem 112(5):1180–1189

    Google Scholar 

  • Daniels BA, Wood L, Tremblay F, Baldridge WH (2012) Functional evidence for d-serine inhibition of non-N-methyl-d-aspartate ionotropic glutamate receptors in retinal neurons. Eur J Neurosci 35(1):56–65

    PubMed  Google Scholar 

  • Drejer J, Larsson OM, Schousboe A (1983) Characterization of uptake and release processes for d- and l-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem Res 8(2):231–243

    PubMed  CAS  Google Scholar 

  • Duffy S, Labrie V, Roder JC (2008) d-Serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 33(5):1004–1018

    PubMed  CAS  Google Scholar 

  • Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141(1):27–32

    PubMed  CAS  Google Scholar 

  • Errico F, Nistico R, Palma G, Federici M, Affuso A, Brilli E, Topo E, Centonze D, Bernardi G, Bozzi Y, D’Aniello A, Di Lauro R, Mercuri NB, Usiello A (2008a) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37(2):236–246

    PubMed  CAS  Google Scholar 

  • Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008b) d-Aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28(41):10404–10414

    PubMed  CAS  Google Scholar 

  • Errico F, Napolitano F, Nistico R, Centonze D, Usiello A (2009) d-Aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev Neurosci 20(5–6):429–440

    PubMed  CAS  Google Scholar 

  • Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011a) Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232(2):240–250

    PubMed  CAS  Google Scholar 

  • Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, Giustizieri M, D’Aniello A, Mercuri NB, Usiello A (2011b) Increased d-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging 32(12):2229–2243

    PubMed  CAS  Google Scholar 

  • Errico F, Nistico R, Napolitano F, Oliva AB, Romano R, Barbieri F, Florio T, Russo C, Mercuri NB, Usiello A (2011c) Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiol Aging 32(11):2061–2074

    PubMed  CAS  Google Scholar 

  • Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci USA 81(21):6876–6880

    PubMed  CAS  Google Scholar 

  • Fletcher EJ, Millar JD, Zeman S, Lodge D (1989) Non-competitive antagonism of N-methyl-d-aspartate by displacement of an endogenous glycine-like substance. Eur J Neurosci 1(3):196–203

    PubMed  CAS  Google Scholar 

  • Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L, Millan MJ, Oliet SH, Mothet JP (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606

    PubMed  Google Scholar 

  • Foster AC, Fagg GE (1987) Comparison of l-[3H]glutamate, d-[3H]aspartate, dl-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133(3):291–300

    PubMed  CAS  Google Scholar 

  • Fuchs SA, Berger R, Klomp LW, de Koning TJ (2005) d-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85(3):168–180

    PubMed  CAS  Google Scholar 

  • Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22(12):2873–2885

    PubMed  CAS  Google Scholar 

  • Gong XQ, Zabek RL, Bai D (2007) d-Serine inhibits AMPA receptor-mediated current in rat hippocampal neurons. Can J Physiol Pharmacol 85(5):546–555

    PubMed  CAS  Google Scholar 

  • Guo JD, Wang H, Zhang YQ, Zhao ZQ (2005) Alterations of membrane properties and effects of d-serine on NMDA-induced current in rat anterior cingulate cortex neurons after monoarthritis. Neurosci Lett 384(3):245–249

    PubMed  CAS  Google Scholar 

  • Gustafson EC, Stevens ER, Wolosker H, Miller RF (2007) Endogenous d-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina. J Neurophysiol 98(1):122–130

    PubMed  CAS  Google Scholar 

  • Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Regional distribution and postnatal changes of d-amino acids in rat brain. Biochim Biophys Acta 1334(2–3):214–222

    PubMed  CAS  Google Scholar 

  • Han H, Miyoshi Y, Ueno K, Okamura C, Tojo Y, Mita M, Lindner W, Zaitsu K, Hamase K (2011) Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure. J Chromatogr B Anal Technol Biomed Life Sci 879(29):3196–3202

    CAS  Google Scholar 

  • Hansen KB, Naur P, Kurtkaya NL, Kristensen AS, Gajhede M, Kastrup JS, Traynelis SF (2009) Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by d-serine and extracellular calcium. J Neurosci 29(4):907–917

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Chiba S (2004) Effect of systemic administration of d-serine on the levels of d- and l-serine in several brain areas and periphery of rat. Eur J Pharmacol 495(2–3):153–158

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T, Takahashi K (1993a) Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci Lett 152(1–2):33–36

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993b) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60(2):783–786

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T (1995a) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7(8):1657–1663

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T (1995b) Extracellular concentration of endogenous free d-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66(3):635–643

    PubMed  CAS  Google Scholar 

  • Haxaire C, Turpin FR, Potier B, Kervern M, Sinet PM, Barbanel G, Mothet JP, Dutar P, Billard JM (2012) Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting d-serine-dependent NMDA receptor activation. Aging Cell 11(2):336–344

    PubMed  CAS  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–236

    PubMed  CAS  Google Scholar 

  • Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59(6):853–859

    PubMed  CAS  Google Scholar 

  • Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-Aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26(10):2814–2819

    PubMed  CAS  Google Scholar 

  • Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28(53):14486–14491

    PubMed  CAS  Google Scholar 

  • Ito K, Hicks TP (2001) Effect of the glycine modulatory site of the N-methyl-d-aspartate receptor on synaptic responses in kitten visual cortex. Neurosci Lett 303(2):95–98

    PubMed  CAS  Google Scholar 

  • Izquierdo I, Medina JH (1995) Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol Learn Mem 63(1):19–32

    PubMed  CAS  Google Scholar 

  • Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM (2006) Age-related effects of the neuromodulator d-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 98(4):1159–1166

    PubMed  CAS  Google Scholar 

  • Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (2011) d-Serine regulates cerebellar LTD and motor coordination through the delta2 glutamate receptor. Nat Neurosci 14(5):603–611

    PubMed  CAS  Google Scholar 

  • Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem 281(20):14151–14162

    PubMed  CAS  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81(2):245–252

    PubMed  CAS  Google Scholar 

  • Kim SJ, Linden DJ (2007) Ubiquitous plasticity and memory storage. Neuron 56(4):582–592

    PubMed  CAS  Google Scholar 

  • Krasteniakov NV, Martina M, Bergeron R (2004) Subthreshold contribution of N-methyl-d-aspartate receptors to long-term potentiation induced by low-frequency pairing in rat hippocampal CA1 pyramidal cells. Neuroscience 126(1):83–94

    PubMed  CAS  Google Scholar 

  • Krasteniakov NV, Martina M, Bergeron R (2005) Role of the glycine site of the N-methyl-d-aspartate receptor in synaptic plasticity induced by pairing. Eur J Neurosci 21(10):2782–2792

    PubMed  CAS  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29(7):1620–1644

    PubMed  CAS  Google Scholar 

  • Lamzin VS, Dauter Z, Wilson KS (1995) How nature deals with stereoisomers. Curr Opin Struct Biol 5(6):830–836

    PubMed  CAS  Google Scholar 

  • Low CM, Wee KS (2010) New insights into the not-so-new NR3 subunits of N-methyl-d-aspartate receptor: localization, structure, and function. Mol Pharmacol 78(1):1–11

    PubMed  CAS  Google Scholar 

  • Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3(6):545–550

    PubMed  CAS  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

    PubMed  CAS  Google Scholar 

  • Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y (2005) Spatial learning and long-term potentiation of mutant mice lacking d-amino-acid oxidase. Neurosci Res 53(1):34–38

    PubMed  CAS  Google Scholar 

  • Man EH, Fisher GH, Payan IL, Cadilla-Perezrios R, Garcia NM, Chemburkar R, Arends G, Frey WH 2nd (1987) d-Aspartate in human brain. J Neurochem 48(2):510–515

    PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    PubMed  CAS  Google Scholar 

  • Martina M, Krasteniakov NV, Bergeron R (2003) d-Serine differently modulates NMDA receptor function in rat CA1 hippocampal pyramidal cells and interneurons. J Physiol 548(Pt 2):411–423

    PubMed  CAS  Google Scholar 

  • Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65(1):454–458

    PubMed  CAS  Google Scholar 

  • McBain CJ, Kleckner NW, Wyrick S, Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36(4):556–565

    PubMed  CAS  Google Scholar 

  • Morikawa A, Hamase K, Zaitsu K (2003) Determination of d-alanine in the rat central nervous system and periphery using column-switching high-performance liquid chromatography. Anal Biochem 312(1):66–72

    PubMed  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97(9):4926–4931

    PubMed  CAS  Google Scholar 

  • Mothet JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard JM (2006) A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5(3):267–274

    PubMed  CAS  Google Scholar 

  • Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, Vestergaard B, Egebjerg J, Gajhede M, Traynelis SF, Kastrup JS (2007) Ionotropic glutamate-like receptor delta2 binds d-serine and glycine. Proc Natl Acad Sci USA 104(35):14116–14121

    PubMed  CAS  Google Scholar 

  • Negri A, Massey V, Williams CH Jr (1987) d-Aspartate oxidase from beef kidney. Purification and properties. J Biol Chem 262(21):10026–10034

    PubMed  CAS  Google Scholar 

  • Olverman HJ, Jones AW, Mewett KN, Watkins JC (1988) Structure/activity relations of N-methyl-d-aspartate receptor ligands as studied by their inhibition of [3H]d-2-amino-5-phosphonopentanoic acid binding in rat brain membranes. Neuroscience 26(1):17–31

    PubMed  CAS  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784

    PubMed  CAS  Google Scholar 

  • Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33(8):1351–1365

    PubMed  Google Scholar 

  • Pina-Crespo JC, Talantova M, Micu I, States B, Chen HS, Tu S, Nakanishi N, Tong G, Zhang D, Heinemann SF, Zamponi GW, Stys PK, Lipton SA (2010) Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits. J Neurosci 30(34):11501–11505

    PubMed  CAS  Google Scholar 

  • Pollegioni L, Sacchi S (2010) Metabolism of the neuromodulator d-serine. Cell Mol Life Sci 67(14):2387–2404

    PubMed  CAS  Google Scholar 

  • Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64(11):1373–1394

    PubMed  CAS  Google Scholar 

  • Potier B, Turpin FR, Sinet PM, Rouaud E, Mothet JP, Videau C, Epelbaum J, Dutar P, Billard JM (2010) Contribution of the d-serine-dependent pathway to the cellular mechanisms underlying cognitive aging. Front Aging Neurosci 2:1

    PubMed  CAS  Google Scholar 

  • Priestley T, Laughton P, Myers J, Le Bourdelles B, Kerby J, Whiting PJ (1995) Pharmacological properties of recombinant human N-methyl-d-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol 48(5):841–848

    PubMed  CAS  Google Scholar 

  • Reyes-Haro D, Muller J, Boresch M, Pivneva T, Benedetti B, Scheller A, Nolte C, Kettenmann H (2010) Neuron–astrocyte interactions in the medial nucleus of the trapezoid body. J Gen Physiol 135(6):583–594

    PubMed  CAS  Google Scholar 

  • Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24(8):2951–2961

    PubMed  CAS  Google Scholar 

  • Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808(1):65–71

    PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92(9):3948–3952

    PubMed  CAS  Google Scholar 

  • Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) d-Serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17(5):1604–1615

    PubMed  CAS  Google Scholar 

  • Smith JL, Higuchi K (1960) Studies on the nutrition and physiology of Pasteurella pestis. V. Inhibition of growth by d-serine and its reversal by various compounds. J Bacteriol 79:539–543

    PubMed  CAS  Google Scholar 

  • Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) d-Serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 100(11):6789–6794

    PubMed  CAS  Google Scholar 

  • Stevens ER, Gustafson EC, Sullivan SJ, Esguerra M, Miller RF (2010) Light-evoked NMDA receptor-mediated currents are reduced by blocking d-serine synthesis in the salamander retina. NeuroReport 21(4):239–244

    PubMed  CAS  Google Scholar 

  • Still JL, Buell MV et al (1949) Studies on the cyclophorase system. d-aspartic oxidase. J Biol Chem 179(2):831–837

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    PubMed  CAS  Google Scholar 

  • Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SH, Dutar P, Epelbaum J, Mothet JP, Billard JM (2011) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 32(8):1495–1504

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Shimamoto K, Schousboe A (2001) Comparison of effects of dl-threo-beta-benzyloxyaspartate (dl-TBOA) and l-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3h]d-aspartate in astrocytes and glutamatergic neurons. Neurochem Res 26(6):661–666

    PubMed  CAS  Google Scholar 

  • Wafford KA, Kathoria M, Bain CJ, Marshall G, Le Bourdelles B, Kemp JA, Whiting PJ (1995) Identification of amino acids in the N-methyl-d-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47(2):374–380

    PubMed  CAS  Google Scholar 

  • Wake K, Yamazaki H, Hanzawa S, Konno R, Sakio H, Niwa A, Hori Y (2001) Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase. Neurosci Lett 297(1):25–28

    PubMed  CAS  Google Scholar 

  • Wee KS, Zhang Y, Khanna S, Low CM (2008) Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol 509(1):118–135

    PubMed  CAS  Google Scholar 

  • Whitney JG, Grula EA (1968) A major attachment site for d-serine in the cell wall mucopeptide of Micrococcus lysodeikticus. Biochim Biophys Acta 158(1):124–129

    PubMed  CAS  Google Scholar 

  • Williams K, Chao J, Kashiwagi K, Masuko T, Igarashi K (1996) Activation of N-methyl-d-aspartate receptors by glycine: role of an aspartate residue in the M3–M4 loop of the NR1 subunit. Mol Pharmacol 50(4):701–708

    PubMed  CAS  Google Scholar 

  • Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814(11):1558–1566

    PubMed  CAS  Google Scholar 

  • Wolosker H, D’Aniello A, Snyder SH (2000) d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100(1):183–189

    PubMed  CAS  Google Scholar 

  • Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275(14):3514–3526

    PubMed  CAS  Google Scholar 

  • Wong HK, Liu XB, Matos MF, Chan SF, Perez-Otano I, Boysen M, Cui J, Nakanishi N, Trimmer JS, Jones EG, Lipton SA, Sucher NJ (2002) Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol 450(4):303–317

    PubMed  CAS  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine. Proc Natl Acad Sci USA 100(25):15194–15199

    PubMed  CAS  Google Scholar 

  • Yang K, Xiong W, Yang G, Kojic L, Wang YT, Cynader M (2011) The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity. Sci Rep 1:203

    PubMed  Google Scholar 

  • Zhang Z, Gong N, Wang W, Xu L, Xu TL (2008) Bell-shaped d-serine actions on hippocampal long-term depression and spatial memory retrieval. Cereb Cortex 18(10):2391–2401

    PubMed  Google Scholar 

Download references

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Billard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billard, JM. d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43, 1851–1860 (2012). https://doi.org/10.1007/s00726-012-1346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1346-3

Keywords

Navigation