Skip to main content
Log in

An electrochemical magneto immunosensor (EMIS) for the determination of paraquat residues in potato samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemical magneto immunosensor for the detection of low concentrations of paraquat (PQ) in food samples has been developed and its performance evaluated in a complex sample such as potato extracts. The immunosensor presented uses immunoreagents specifically developed for the recognition of paraquat, a magnetic graphite–epoxy composite (m-GEC) electrode and biofunctionalized magnetic micro-particles (PQ1-BSAMP) that allow reduction of the potential interferences caused by the matrix components. The amperometric signal is provided by an enzymatic probe prepared by covalently linking an enzyme to the specific antibodies (Ab198-cc-HRP). The use of hydroquinone, as mediator, allows recording of the signal at a low potential, which also contributes to reducing the background noise potentially caused by the sample matrix. The immunocomplexes formed on top of the modified MP are easily captured by the m-GEC, which acts simultaneously as transducer. PQ can be detected at concentrations as low as 0.18 ± 0.09 μg L−1. Combined with an efficient extraction procedure, PQ residues can be directly detected and accurately quantified in potato extracts without additional clean-up or purification steps, with a limit of detection (90 % of the maximum signal) of 2.18 ± 2.08 μg kg−1, far below the maximum residue level (20 μg kg−1) established by the EC. The immunosensor presented here is suitable for on-site analysis. Combined with the use of magnetic racks, multiple samples can be run simultaneously in a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hutson DH, Roberts TR (1987) Progress in pesticide biochemistry and toxicology, vol. 6: Herbicides. Wiley, Chichester, 372 p

    Google Scholar 

  2. (TOXNET) TDN (1995) Hazardous substances data bank. US National Library of Medicine, Bethesda

    Google Scholar 

  3. Fernández M, Ibáñez M, Picó Y, Mañes J (1998) Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the Valencian community (Spain). Arch Environ Contam Toxicol 35(3):377–384. doi:10.1007/s002449900391

    Article  Google Scholar 

  4. Philbey AW, Morton AG (2001) Paraquat poisoning in sheep from contaminated water. Aust Vet J 79(12):842–843

    Article  CAS  Google Scholar 

  5. Taylor PJ, Salm P, Pillans PI (2001) A detection scheme for paraquat poisoning: validation and a five-year experience in Australia. J Anal Toxicol 25(6):456–460

    Article  CAS  Google Scholar 

  6. Chester G, Woollen BH (1982) Studies of the occupational exposure of Malaysian plantation workers to paraquat. Br J Ind Med 39(1):23–33

    CAS  Google Scholar 

  7. Fukushima T, Tanaka K, Lim H, Moriyama M (2002) Mechanism of cytotoxicity of paraquat. Environ Health Prev Med 7(3):89–94. doi:10.1265/ehpm.2002.89

    Article  CAS  Google Scholar 

  8. Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T, Yamane Y (1996) Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 70(9):585–589. doi:10.1007/s002040050316

    Article  CAS  Google Scholar 

  9. Yang C-J, Lin J-L, Lin-Tan D-T, Weng C-H, Hsu C-W, Lee S-Y, Lee S-H, Chang C-M, Lin W-R, Yen T-H (2012) Spectrum of toxic hepatitis following intentional paraquat ingestion: analysis of 187 cases. Liver Int 32(9):1400–1406. doi:10.1111/j.1478-3231.2012.02829.x

    Article  CAS  Google Scholar 

  10. Lee P-C, Bordelon Y, Bronstein J, Ritz B (2012) Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease. Neurology 79(20):2061–2066. doi:10.1212/WNL.0b013e3182749f28

    Article  CAS  Google Scholar 

  11. Hsu CW, Lin JL, Lin-Tan DT, Chen KH, Yen TH, Wu MS, Lin SC (2012) Early hemoperfusion may improve survival of severely paraquat-poisoned patients. Plos One 7(10):e48397

    Article  CAS  Google Scholar 

  12. Cha ES, Lee YK, Moon EK, Kim YB, Lee Y-J, Jeong WC, Cho EY, Lee IJ, Hur J, Ha M, Lee WJ (2012) Paraquat application and respiratory health effects among South Korean farmers. Occup Environ Med 69(6):398–403. doi:10.1136/oemed-2011-100244

    Article  Google Scholar 

  13. Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Role of secondary mediators in caffeine-mediated neuroprotection in Maneb- and Paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 37(4):875–884. doi:10.1007/s11064-011-0682-0

    Article  CAS  Google Scholar 

  14. Fahim MA, Nemmar A, Safa S, Adem A, Hasan MY (2012) Paraquat exposure induces dorsiflexor muscle dysfunction and dopaminergic modification resembling Parkinson’s disease. FASEB J 26

  15. Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E, Fujita M, Hashimoto M, Masliah E (2012) Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener 7:49

    Article  CAS  Google Scholar 

  16. Brent J, Schaeffer TH (2011) Systematic review of Parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J Occup Environ Med 53(11):1332–1336. doi:10.1097/JOM.0b013e318233775d

    Article  CAS  Google Scholar 

  17. Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17(7):1115–1125. doi:10.1038/cdd.2009.217

    Article  CAS  Google Scholar 

  18. Podder B, Kim Y-S, Zerin T, Song H-Y (2012) Antioxidant effect of silymarin on paraquat-induced human lung adenocarcinoma A549 cell line. Food Chem Toxicol 50(9):3206–3214. doi:10.1016/j.fct.2012.06.007

    Article  CAS  Google Scholar 

  19. Jian X, Ruan Y, Guo G, Zhang Y (2008) Anti-TGF-[beta]1 antibody: an effective treatment for lung injury caused by paraquat in the future. Med Hypotheses 70(3):705

    Article  CAS  Google Scholar 

  20. Kim KS, Suh GJ, Kwon WY, Kwak YH, Lee K, Lee HJ, Jeong KY, Lee MW (2012) Antioxidant effects of selenium on lung injury in paraquat intoxicated rats. Clin Toxicol 50(8):749–753. doi:10.3109/15563650.2012.708418

    Article  Google Scholar 

  21. Novaes RD, Goncalves RV, Santos Marques DC, MdC C, MdC GP, Viana Leite JP, dos Santos Costa Maldonado IR (2012) Effect of bark extract of Bathysa cuspidata on hepatic oxidative damage and blood glucose kinetics in rats exposed to paraquat. Toxicol Pathol 40(1):62–70. doi:10.1177/0192623311425059

    Article  Google Scholar 

  22. Commission TE (2011) Commission Regulation (EU) No 520/2011. 520/2011

  23. Peeters MC, Defloor I, Coosemans J, Delcour JA, Ooms L, Deliever R, De Vos D (2001) Simple ion chromatographic method for the determination of chlormequat residues in pears. J Chromatogr A 920(1–2):255–259. doi:10.1016/S0021-9673(01)00836-6

    CAS  Google Scholar 

  24. Startin JR, Hird SJ, Sykes MD, Taylor JC, Hill ARC (1999) Determination of residues of the plant growth regulator chlormequat in pears by ion-exchange high performance liquid chromatography–electrospray mass spectrometry. Analyst 124(7):1011–1015

    Article  CAS  Google Scholar 

  25. Guijarro EC, Yáñez-Sedeño P, Diéz LMP (1987) Determination of paraquat by flow-injection spectrophotometry. Anal Chim Acta 199(0):203–208. doi:10.1016/S0003-2670(00)82816-0

    Article  Google Scholar 

  26. Kolberg DIS, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HGJ (2012) Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Anal Bioanal Chem 404:2465–2474. doi:10.1007/s00216-012-6340-9

    Article  CAS  Google Scholar 

  27. Wang Z, Wang Z, Xing J (2011) The quantitative analysis of paraquat in biological samples by liquid chromatography–electrospray ionization–mass spectrometry. J Anal Toxicol 35(1):23–27

    Article  CAS  Google Scholar 

  28. Robb CS, Eitzer BD (2011) The direct analysis of diquat and paraquat in lake water samples by per aqueous liquid chromatography. Lc Gc North America 29(1):54–59

    CAS  Google Scholar 

  29. Whitehead RD Jr, Montesano MA, Jayatilaka NK, Buckley B, Winnik B, Needham LL, Barr DB (2010) Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 878(27):2548–2553

    Article  CAS  Google Scholar 

  30. Castro R, Moyano E, Galceran MT (2001) Determination of quaternary ammonium pesticides by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 914(1–2):111–121. doi:10.1016/S0021-9673(01)00523-4

    CAS  Google Scholar 

  31. Baeck S, Shin Y, Chung H, Pyo M (2007) Comparison study of the extraction methods of paraquat in post-mortem human blood samples. Arch Pharm Res 30(2):235–239. doi:10.1007/bf02977699

    Article  CAS  Google Scholar 

  32. Esparza X, Moyano E, Galceran MT (2009) Analysis of chlormequat and mepiquat by hydrophilic interaction chromatography coupled to tandem mass spectrometry in food samples. J Chromatogr A 1216(20):4402–4406. doi:10.1016/j.chroma.2009.03.037

    Article  CAS  Google Scholar 

  33. Winnik B, Barr DB, Thiruchelvam M, Montesano MA, Richfield EK, Buckley B (2009) Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry. Anal Bioanal Chem 395(1):195–201. doi:10.1007/s00216-009-2929-z

    Article  CAS  Google Scholar 

  34. Núñez O, Moyano E, Galceran MT (2002) Capillary electrophoresis–mass spectrometry for the analysis of quaternary ammonium herbicides. J Chromatogr A 974(1–2):243–255

    Google Scholar 

  35. Núñez O, Moyano E, Puignou L, Galceran MT (2001) Sample stacking with matrix removal for the determination of paraquat, diquat and difenzoquat in water by capillary electrophoresis. J Chromatogr A 912(2):353–361

    Article  Google Scholar 

  36. da Silva OB, Machado SAS (2012) Evaluation of the detection and quantification limits in electroanalysis using two popular methods: application in the case study of paraquat determination. Analytical Methods 4(8):2348–2354. doi:10.1039/c2ay25111f

    Article  Google Scholar 

  37. Goecer M, Hoferer K, Zipfel J, Spangenberg B (2009) A new TLC method for quantification of paraquat, diquat, difenzoquat, mepiquat and chloromequat in water. J Planar Chromatogr-Mod 22(1):59–63. doi:10.1556/jpc.22.2009.1.11

    Article  CAS  Google Scholar 

  38. Gao R, Choi N, Chang S-I, Kang SH, Song JM, Cho SI, Lim DW, Choo J (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681(1–2):87–91. doi:10.1016/j.aca.2010.09.036

    Article  CAS  Google Scholar 

  39. Podola B, Melkonian M (2005) Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae. J Appl Phycol 17(3):261–271

    Article  CAS  Google Scholar 

  40. Lee JH, Gu MB (2005) An integrated mini biosensor system for continuous water toxicity monitoring. Biosens Bioelectron 20(9):1744–1749

    Article  CAS  Google Scholar 

  41. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21(3):500–507

    Article  CAS  Google Scholar 

  42. Kim BC, Youn CH, Ahn JM, Gu MB (2005) Screening of target-specific stress-responsive genes for the development of cell-based biosensors using a DNA microarray. Anal Chem 77(24):8020–8026

    Article  CAS  Google Scholar 

  43. Strachan G, Capel S, Maciel H, Porter AJR, Paton GI (2002) Application of cellular and immunological biosensor techniques to assess herbicide toxicity in soils. Eur J Soil Sci 53(1):37–44

    Article  CAS  Google Scholar 

  44. Spinks CA, Wang B, Mills ENC, Morgan MRA (1999) Development of an ELISA for paraquat; improvement of antibody characteristics by reversed affinity chromatography. Analyst 124(6):847–850

    Article  CAS  Google Scholar 

  45. Mallat E, Barzen C, Abuknesha R, Gauglitz G, Barcelo D (2001) Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection. Anal Chim Acta 427(2):165–171

    Article  CAS  Google Scholar 

  46. Mastichiadis C, Kakabakos SE, Christofidis I, Koupparis MA, Willetts C, Misiakos K (2002) Simultaneous determination of pesticides using a four-band disposable optical capillary immunosensor. Anal Chem 74(23):6064–6072. doi:10.1021/ac020330x

    Article  CAS  Google Scholar 

  47. Abuknesha RA, Luk C (2005) Paraquat enzyme-immunoassays in biological samples: assessment of the effects of hapten–protein bridge structures on assay sensitivity. Analyst 130(6):956–963. doi:10.1039/b418087a

    Article  CAS  Google Scholar 

  48. Niewola Z, Hayward C, Symington BA, Robson RT (1985) Quantitative estimation of paraquat by an enzyme linked immunosorbent assay using a monoclonal antibody. Clinica Chimica Acta 148(2):149–156

    Article  CAS  Google Scholar 

  49. Van Emon J, Hammock B, Seiber JN (1986) Enzyme-linked immunosorbent assay for paraquat and its application to exposure analysis. Anal Chem 58(8):1866–1873. doi:10.1021/ac00121a057

    Article  Google Scholar 

  50. Selisker MY, Herzog DP, Erber RD, Fleeker JR, Itak JA (1995) Determination of paraquat in fruits and vegetables by a magnetic particle based enzyme-linked immunosorbent assay. J Agric Food Chem 43(2):544–547. doi:10.1021/jf00050a053

    Article  CAS  Google Scholar 

  51. Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26(4):1178–1194

    Article  Google Scholar 

  52. Raz SR (2010) On-chip food safety monitoring: multi-analyte screening with imaging surface plasmon resonance-based biosensor. Thesis Wageningen University, Wageningen, NL, 174 pp

  53. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89. doi:10.1016/j.tibtech.2008.10.010

    Article  CAS  Google Scholar 

  54. Piliarik M, Parova L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404. doi:10.1016/j.bios.2008.08.012

    Article  CAS  Google Scholar 

  55. Haasnoot W (2009) Multiplex biosensor immunoassays for antibiotics in the food chain. Multiplex biosensor immunoassays for antibiotics in the food chain. Doctoral Thesis, Wageningen University & Research Centre, 240 pp

  56. Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388(3):565–578. doi:10.1007/s00216-007-1293-0|ISSN 1618–2642

    Article  CAS  Google Scholar 

  57. Bacigalupo MA, Meroni G, Mirasoli M, Parisi D, Longhi R (2004) Ultrasensitive quantitative determination of paraquat: application to river, ground, and drinking water analysis in an agricultural area. J Agric Food Chem 53(2):216–219. doi:10.1021/jf048746u

    Article  Google Scholar 

  58. Van Emon J, Seiber J, Hammock B (1987) Application of an enzyme-linked immunosorbent assay (ELISA) to determine paraquat residues in milk, beef, and potatoes. Bull Environ Contam Toxicol 39(3):490–497

    Article  Google Scholar 

  59. Garcia-Febrero R, Salvador JP, Sanchez-Baeza F, Marco MP. (2013) A immunochemical high-throughput screening procedure for determination of paraquat residues in food samples. (submitted)

  60. Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6(8):657–664

    Article  CAS  Google Scholar 

  61. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2005) Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37(5):789–830

    Article  Google Scholar 

  62. Lojou É, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. J Electroceram 16(1):79–91. doi:10.1007/s10832-006-2365-9

    Article  CAS  Google Scholar 

  63. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    Article  CAS  Google Scholar 

  64. Xu Z, Chen X, Dong S (2006) Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends Anal Chem 25(9):899–908

    Article  CAS  Google Scholar 

  65. Valera E, Muriano A, Pividori MI, Sánchez-Baeza F, Marco MP (2013) Development of a Coulombimetric immunosensor based on specific antibodies labeled with CdS nanoparticles for sulfonamide antibiotic residues analysis and its application to honey samples. Biosens Bioelectron 43:211–217

    Article  CAS  Google Scholar 

  66. Zacco E, Adrian J, Galve R, Marco M-P, Alegret S, Pividori MI (2007) Electrochemical magneto immunosensing of antibiotics residues in milk. Biosens Bioelectron 22:2184–2191

    Article  CAS  Google Scholar 

  67. Zacco E, Pividori MI, Alegret S, Galve R, Marco M-P (2006) Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem 78(6):1780–1788

    Article  CAS  Google Scholar 

  68. Muriano A, Chabottaux V, Pinacho DG, Diserens J-M, Granier B, Stead S, Sanchez-Baeza F, Pividori MI, Marco MP (submitted to this issue) A portable electrochemical magneto immunosensor (EMIS) for detection of sulfonamide antibiotics in honey. Anal Bioanal Chem (in press)

  69. Müller-Schulte D, Schmitz-Rode T, Borm P (2005) Ultra-fast synthesis of magnetic and luminescent silica beads for versatile bioanalytical applications. J Magn Magn Mater 293(1):135–143

    Article  Google Scholar 

  70. Yeung SW, Hsing IM (2006) Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens Bioelectron 21(7):989–997

    Article  CAS  Google Scholar 

  71. Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79(4):1466–1473. doi:10.1021/ac061879p

    Article  CAS  Google Scholar 

  72. Abuknesha RA, Luk CY, Griffith HHM, Maragkou A, Iakovaki D (2005) Efficient labelling of antibodies with horseradish peroxidase using cyanuric chloride. J Immunol Methods 306(1–2):211–217

    Article  CAS  Google Scholar 

  73. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  74. Williams E, Pividori MI, Merkoci A, Forster RJ, Alegret S (2003) Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosens Bioelectron 19:165–175

    Article  CAS  Google Scholar 

  75. Maggio ET (1981) Enzyme-immunoassay, 2nd edn. CRC, Boca Raton

    Google Scholar 

  76. Lutaladio N, Castaldi L (2009) Potato: the hidden treasure. J Food Compos Anal 22(6):491–493. doi:10.1016/j.jfca.2009.05.002

    Article  Google Scholar 

  77. Burlingame B, Mouillé B, Charrondière UR (2009) Review: nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal 22:494–502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E. Valera thank the support from the Spanish Government (Ministerio de Ciencia e Innovación) for a Juan de la Cierva fellowship. This work has been supported by the European Community (FP7-KBBE-211326). CIBER-BBN is an initiative funded by VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The AMR group (nowadays Nanobiotechnology for Diagnostics (Nb4D) group) is a consolidated Grup de Recerca de la Generalitat de Catalunya and has a support from the department d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient 2009 SER 1343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-Pilar Marco.

Additional information

Published in the topical collection Rapid Detection in Food and Feed with guest editors Rudolf Krska and Michel Nielen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Febrero, R., Valera, E., Muriano, A. et al. An electrochemical magneto immunosensor (EMIS) for the determination of paraquat residues in potato samples. Anal Bioanal Chem 405, 7841–7849 (2013). https://doi.org/10.1007/s00216-013-7209-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7209-2

Keywords

Navigation