Skip to main content
Log in

Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A multiple-strain algal biosensor was constructed for the detection of herbicides inhibiting photosynthesis. Nine different microalgal strains were immobilised on an array biochip using permeable membranes. The biosensor allowed on-line measurements of aqueous solutions passing through a flow cell using chlorophyll fluorescence as the biosensor response signal. The herbicides atrazine, simazine, diuron, isoproturon and paraquat were detectable within minutes at minimal LOEC (Lowest Observed Effect Concentration) ranging from 0.5 to 100μgL−1, depending on the herbicide and algal strain. The most sensitive strains in terms of EC50 values were Tetraselmis cordiformis and Scherffelia dubia. Less sensitive species were Chlorella vulgaris, Chlamydomonas sp. and Pseudokirchneriella subcapitata, but for most of the strains no general sensitivity or resistance was found. The different responses of algal strains to the five herbicides constituted a complex response pattern (RP), which was analysed for herbicide specificity within the linear dose-response relationship. Comparisons of herbicide-specific RP to reference RPs of the five herbicides always showed the lowest deviation of the herbicide-specific RP tested with the reference RP of the same herbicide for the triazine and phenylurea herbicides. We therefore conclude that, in principle, identification of a specific herbicide is possible employing the algal sensor chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASC:

algal sensor chip

CI:

95% confidence interval

EC50:

Effect Concentration 50

Δ F/Fm:

Quantum Efficiency of Electron Transport of Photosystem II

Fm:

Maximal fluorescence induced by saturation pulse

F t :

Fluorescence at steady state of photosynthesis

LOEC:

Lowest Observed Effect Concentration

NOEC:

No Observed Effect Concentration

PSI:

Photosystem I

PSII:

Photosystem II

RP:

Response pattern – describes differences among several algal strains in their sensitivity to herbicides

RP1:

Herbicide specific and concentration independent response pattern used as a standard reference for the identification of unknown herbicides

RP2:

Response pattern of an unknown herbicide to be identified by comparison to different herbicide specific RP1’s

S.D.:

Standard deviation

References

  • Altamirano M, Garcia-Villada L, Agrelo M, Sanchez-Martin L, Martin-Otero L, Flores-Moya A, Rico M, Lopez-Rodas V, Costas E (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: An application to detect TNT. Biosens. Bioelectron. 19: 1319–1323.

    Article  PubMed  Google Scholar 

  • Avramescu A, Rouillon R, Carpentier R (1999) Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly(vinylalcohol): Application to the detection of pollutants. Biotechnol. Tech. 13: 559–562.

    Article  Google Scholar 

  • Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. 377: 434–445.

    Article  PubMed  Google Scholar 

  • Ben Rejeb S, Fischer-Durand N, Martel A, Le Goffic F, Lawrence JF, Yeung JM, Abbott MA (1998) Development and validation of an indirect enzyme immunoassay for the detection of the herbicide isoproturon in water matrices. Int. J. Environ. Anal. Chem. 69: 13–30.

    Google Scholar 

  • Blanck H, Wallin G, Wängberg SÅ (1984) Species dependent variation in algal sensitivity to chemical compounds. Ecotox. Environ. Safe. 8: 339–351.

    Article  Google Scholar 

  • Bouchardy C, Schüler G, Minder C, Hotz P, Bousquet A, Levi F, Fisch T, Torhorst J, Raymond L (2002) Cancer risk by occupation and socioeconomic group among men – A study by the Association of Swiss Cancer Registries. Scand. J. Work Environ. Health 28: 1–88.

    Google Scholar 

  • Brack W, Frank H (1998) Chlorophyll a fluorescence: A tool for the investigation of toxic effects in the photosynthetic apparatus. Ecotox. Environ. Safe. 40: 34–41.

    Article  Google Scholar 

  • Bukhov N, Egorova E, Krendeleva T, Rubin A, Wiese C, Heber U (2001) Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers. Photosynth. Res. 70: 155–166.

    Article  Google Scholar 

  • Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: An overview. Photosynthetica 38: 483–491.

    Article  Google Scholar 

  • Campanella L, Cubadda F, Sammartino MP, Saoncella A (2001) An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res. 35: 69–76.

    Article  PubMed  Google Scholar 

  • European Union (1998) Council Directive 98/83/EC of 3 November 1998.

  • Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sens. Actuator B-Chem. 51: 256–260.

    Article  Google Scholar 

  • Girling AE, Pascoe D, Janssen CR, Peither A, Wenzel A, Schäfer H, Neumeier B, Mitchell GC, Taylor EJ, Maund SJ, Lay JP, Jüttner I, Crossland NO, Stephenson RR, Personne G (2000) Development of methods for evaluating toxicity to freshwater ecosystems. Ecotox. Environ. Safe. 45: 148–176.

    Article  Google Scholar 

  • Gitelson AA, Buschmann C, Lichtenthaler HK (1998) Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Physiol. 152: 283–296.

    Google Scholar 

  • Grandet M, Weil L, Quentin KE (1988) Determination of triazine-herbicides and their metabolites in water samples by gas-chromatography. Z. Wasser Abwass. For. 21: 21–24.

    Google Scholar 

  • Gregor J, Marsalek B (2004) Freshwater phytoplankton quantification by chlorophyll alpha: A comparative study of in vitro, in vivo and in situ methods. Water Res. 38: 517–522.

    Article  PubMed  Google Scholar 

  • Koblizek M, Masojidek J, Komenda J, Kucera T, Pilloton R, Mattoo AK, Giardi MT (1998) A sensitive photosystem II-based biosensor for detection of a class of herbicides. Biotechnol. Bioeng. 60: 664–669.

    Article  PubMed  Google Scholar 

  • Ma J, Lin F, Wang S, Xu L (2003) Toxicity of 21 herbicides to the green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol. 71: 594–601.

    Article  PubMed  Google Scholar 

  • Mattoo AK, Pick U, Hoffman-Falk H, Edelman M (1981) The rapidly metabolized 32,000-Dalton polypeptide of the chloroplast is the proteinaceous shield regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc. Natl. Acad. Sci. U.S.A. 78: 1572–1576.

    PubMed  Google Scholar 

  • McCormick PV, Cairns J (1994) Algae as indicators of environmental-change. J. Appl. Phycol. 6: 509–526.

    Google Scholar 

  • McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557.

    Google Scholar 

  • Moreland DE (1993) Research on biochemistry of herbicides – an historical overview. Z. Naturforsch. (C) 48: 121–131.

    Google Scholar 

  • Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotox. Environ. Safe. 46: 181–185.

    Article  Google Scholar 

  • Pandard P, Vasseur P, Rawson DM (1993) Comparison of two types of sensors using eukaryotic algae to monitor pollution of aquatic systems. Water Res. 27: 427–431.

    Article  Google Scholar 

  • Pastrik KH, Karst U, Schmid RD (1991) Cyanobacteria mutants with increased sensitivity to herbicides – An improved biological material for biosensors. Z. Wasser Abwass. For. 24: 12–15.

    Google Scholar 

  • Pfister K, Steinback KE, Gardner G, Arntzen CJ (1981) Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. U.S.A. 78: 981–985.

    Google Scholar 

  • Pipe AE (1992) Pesticide effects on soil algae and cyanobacteria. Rev. Environ. Contam. Toxicol. 127: 95–170.

    Google Scholar 

  • Podola B, Melkonian M (2003) A long-term operating algal biosensor for the rapid detection of volatile toxic compounds. J. Appl. Phycol. 15: 415–424.

    Article  Google Scholar 

  • Podola B, Nowack ECM, Melkonian M (2004) The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens. Bioelectron. 19: 1253–1260.

    Article  PubMed  Google Scholar 

  • Rawson DM, Willmer AJ, Cardosi MF (1987) The development of whole cell biosensors for online screening of herbicide pollution of surface waters. Toxic. Asses. 2: 325–340.

    Google Scholar 

  • Reupert R, Plöger E (1988) Determination of nitrogen-containing pesticides by HPLC with diode-array detection. Fresenius J. Anal. Chem. 331: 503–509.

    Article  Google Scholar 

  • Rogers KR (1995) Biosensors for environmental applications. Biosens. Bioelectron. 10: 533–541.

    Article  Google Scholar 

  • Rojickova-Padrtova R, Marsalek B (1999) Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38: 3329–3338.

    Article  Google Scholar 

  • Schlett C (1991) Multi-residue-analysis of pesticides by HPLC after solid-phase extraction. Fresenius J. Anal. Chem. 339: 344–347.

    Article  Google Scholar 

  • Schreiber U, Müller JF, Haugg A, Gademann R (2002) New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74: 317–330.

    Article  Google Scholar 

  • Short P, Colborn T (1999) Pesticide use in the US and policy implications: A focus on herbicides. Toxicol. Ind. Health 15: 240–275.

    Article  PubMed  Google Scholar 

  • Tang JX, Hoagland KD, Siegfried BD (1997) Differential toxicity of atrazine to selected freshwater algae. Bull. Environ. Contam. Toxicol. 59: 631–637.

    Article  PubMed  Google Scholar 

  • Umweltbundesamt (1997) Daten zur Umwelt – Der Zustand der Umwelt in Deutschland. Berlin, Erich Schmidt Verlag GmbH & Co.

  • Vedrine C, Leclerc JC, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18: 457–463.

    Article  PubMed  Google Scholar 

  • Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst. Eng. 84: 1–12.

    Article  Google Scholar 

  • Vyhnalek V, Fisar Z, Fisarova A, Komarkova J (1993) In-vivo fluorescence of chlorophyll a – Estimation of phytoplankton biomass and activity in Rimov Reservoir (Czech Republic). Water Sci. Technol. 28: 29–33.

    Google Scholar 

  • Walker AE, Holman RE, Leidy RB (2000) ELISA and GC/MS analysis of pesticide residues in North Carolina. J. Am. Water Resour. Assoc. 36: 67–74.

    Google Scholar 

  • Weetall HH (1996) Biosensor technology – What? Where? When? And Why? Biosens. Bioelectron. 11: I-IV.

    Article  Google Scholar 

  • Weil L, Schneider RJ, Schäfer O, Ulrich P, Weller M, Ruppert T, Niessner R (1991) A heterogeneous immunoassay for the determination of triazine herbicides in water. Fresenius J. Anal. Chem. 339: 468–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Podola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podola, B., Melkonian, M. Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae. J Appl Phycol 17, 261–271 (2005). https://doi.org/10.1007/s10811-005-4945-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-005-4945-5

Key Words

Navigation