Skip to main content
Log in

Advanced surface characterization of silver nanocluster segregation in Ag–TiCN bioactive coatings by RBS, GDOES, and ARXPS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS–GDOES–ARXPS study of the surface characterization of Ag–TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1–10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20–30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with a height d = 1.5 nm and coverage θ = 0.20 was applied to the sample with Ag/Ti = 1.49 and deposited at room temperature.

SEM micrograph of silver nanocluster surface segregation on bioactive AgTiCN coatings as analyzed by a) GDOES, b) RBS, and c) ARXPS depth profiles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hauert R (2003) Diam Rel Mater 12:583–589

    Article  CAS  Google Scholar 

  2. Escudeiro A et al (2013) Thin Solid Films. doi:10.1016/j.tsf.2012.12.086

  3. Liu C, Bi Q, Matthews A (2003) Surf Coat Technol 163–164:597–604

    Article  Google Scholar 

  4. Serro AP et al (2009) Surf Coat Technol 203:3701–3707

    Article  CAS  Google Scholar 

  5. Yildiz F, Yetimb AF, Alsaran A, Efeoglu I (2009) Wear 267:695–701

    Article  CAS  Google Scholar 

  6. Oliveira C, Gonçalves L, Almeida BG, Tavares CJ, Carvalho S, Vaz F, Escobar Galindo R, Henriques M, Susano M, Oliveira R (2008) Surf Coat Technol 203:490–494

    Article  CAS  Google Scholar 

  7. Oliveira C, Escobar Galindo R, Palacio C, Calderon S, Almeida BG, Henriques M, Espinosa A, Carvalho S (2011) Solid State Sci 13:95–100

    Article  CAS  Google Scholar 

  8. Sánchez-López JC, Abad MD, Carvalho I, Escobar Galindo R, Benito N, Ribeiro S, Henriques M, Cavaleiro A, Carvalho S (2012) Surf Coat Technol 206:2192–2198

    Article  Google Scholar 

  9. Mulligan CP, Blanchet TA, Galla D (2010) Wear 269:125–13110

    Article  CAS  Google Scholar 

  10. Schierholz JM, Lucasj LJ, Rump A, Pulverer G (1998) J Hosp Infect 40:257–262

    Article  CAS  Google Scholar 

  11. Kelly PJ, Li H, Benson PS, Whitehead KA, Verran J, Arnell RD, Iordanova I (2010) Surf Coat Technol 205:1606–16182

    Article  CAS  Google Scholar 

  12. Morrison M, Buchanan R, Liaw P, Berry C, Brigmon R, Riester L, Abernathy H, Jin C, Narayan R (2006) Diam Rel Mater 15:138

    Article  CAS  Google Scholar 

  13. Dowling DP, Betts AJ, Pope C, McConnell ML, Eloy R, Arnaud MN (2003) Surf Coat Technol 163–164:637–640

    Article  Google Scholar 

  14. Hsieh JH, Tseng C, Chang YK, Chang SY, Wub W (2008) Surf Coat Technol 202:5586–5589

    Article  CAS  Google Scholar 

  15. Cioffi N, Ditaranto N, Torsi L, Picca RA, Giglio E, Sabbatini L, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Anal Bioanal Chem 382:1912–191816

    Article  CAS  Google Scholar 

  16. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  17. Lok C, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) J Biol Inorg Chem 12:527–534

    Article  CAS  Google Scholar 

  18. Morones J, Elechiguera JL, Cammacho A, Holt K, Kouri JB, Ramirez JT, Yacaman J (2005) Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  19. Ferraris M, Perero S, Miola M, Ferraris S, Verné E, Morgiel J (2010) Mater Chem Phys 120:123–126

    Article  CAS  Google Scholar 

  20. Escobar Galindo R, Gago R, Duday D, Palacio C (2010) Anal Bioanal Chem 396:2725–2740

    Article  CAS  Google Scholar 

  21. Manninen NK et al (2011) J Phys D: Appl Phys 44:375501

    Article  Google Scholar 

  22. Krzanowski JE, Endrino JL, Nainaparampil JJ, Zabinski JS (2004) J Mater Engin Perform 13(4):439

    Article  CAS  Google Scholar 

  23. Adochite R, Munteanu D, Torrell M, Cunha L, Alves E, Barradas NP, Cavaleiro A, Riviere P, Bourhis E, Eyidi D, Vaz F (2012) Appl Surf Sci 258:4028–4034

    Article  CAS  Google Scholar 

  24. Hu JJ, Muratore C, Voevodin AA (2007) Comp Sci Technol 67:336–347

    Article  CAS  Google Scholar 

  25. Incerti L, Rotaa A, Valeri S, Miguel A, García JA, Rodríguez RJ, Osés J (2011) Vacuum 85:1108–1113

    Article  CAS  Google Scholar 

  26. Clayton WB Jr, Chen QY (1995) Mater Lett 23:7–12

    Article  Google Scholar 

  27. Climent-Font A, Pászti F, García G, Fernández-Jiménez MT, Agulló F (2004) Nucl Instrum Methods B 219:400–4

    Article  Google Scholar 

  28. Kotai E (1994) Nucl Instrum Methods B 85:588–96

    Article  CAS  Google Scholar 

  29. Mayer M (1997) SIMNRA User's Guide

  30. Quentmeier A (1997) Sections 7.1 and 7.2. In: Payling R, Jones DG, Bengston A (eds) Glow discharge optical emission spectroscopy. Wiley, New York

    Google Scholar 

  31. Winchester R, Payling R (2004) Spectrochim. Acta Part B 59:607–666

    Article  Google Scholar 

  32. Escobar Galindo R, Forniés E, Albella JM (2005) J Anal At Spectrom 20:1108–1115

    Article  CAS  Google Scholar 

  33. Escobar Galindo R, Forniés E, Albella JM (2005) J Anal At Spectrom 20:1116–1120

    Article  CAS  Google Scholar 

  34. Escobar Galindo R, Forniés E, Gago R, Albella JM (2007) J Anal At Spectrom 22:1512–1516

    Article  CAS  Google Scholar 

  35. Arcos T, Oelhafen P, Aebi U, Hefti A, Duggelin M, Mathys D, Guggenheim R (2002) Vacuum 67:463–470

    Article  Google Scholar 

  36. Niu F, Chang ITH, Dobson PJ, Cantor B (1997) Mater Sci Eng A226–228:161–167

    Google Scholar 

  37. Hofmann S (1991) Prog Surf Sci 36(1):35–87

    Article  CAS  Google Scholar 

  38. CASA XPS software Ltd. v2.0 User’s Manual www.casaxps.com. Accessed 10 January 2013

  39. Palacio C, Ocón CP, Herrasti P, Díaz D, Arranz A (2003) J Electroanal Chem 545:53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Spanish Ministry of Science and Innovation (projects FUNCOAT CSD2008-00023 and RyC2007-0026). This research is sponsored by FEDER funds through the program COMPETE “Programa Operacional Factores de Competitividade” and by national funds through FCT “Fundação para a Ciência e a Tecnologia”, in the framework of the Strategic Projects PEST-C/FIS/UI607/2011, and PEST-C/EME/UI0285/2011 and under the project PTDC/CTM/102853/2008. The authors would like to acknowledge I. Caretti and R. Velasco for the fruitful discussions and the proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Escobar Galindo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar Galindo, R., Manninen, N.K., Palacio, C. et al. Advanced surface characterization of silver nanocluster segregation in Ag–TiCN bioactive coatings by RBS, GDOES, and ARXPS. Anal Bioanal Chem 405, 6259–6269 (2013). https://doi.org/10.1007/s00216-013-7058-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7058-z

Keywords

Navigation