Skip to main content
Log in

Effects of W and Mo Concentrations on Mechanical Behaviour of Ni–B Based Coatings—A Comparative Study

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

The coatings are utilised on any materials as a protective layer. The coating characteristics are dependent on their composition, phase structure and surface morphology. In this current investigation, the coated specimens are developed by chemical deposition method with the incorporation of tungsten (W) and molybdenum (Mo) either alone or jointly into Ni–B matrix. The coatings are studied to make a comparative analysis on mechanical behaviours of the as-deposited coatings to understand the impact of bath parameters. Steel made square samples are coated with borohydride reduced coatings with various compositions. The coating characterisations are carried out for the elemental analysis of the coated specimens as well as their surface morphology. The coated layer thicknesses are found to rise due to rise in concentration for all types of coatings under study. The nanoindentation tests are conducted to determine elastic modulus and nanohardness. The scratch hardness tests are carried out using a micro-scratch tester. The boron concentration is found to increase with chemical solution element concentrations which contribute to increase the nanohardness. The nanohardness of Ni–B–W–Mo coatings is found to be better than untreated binary and ternary coatings at higher compositions. The scratch hardness of untreated Ni–B–W coatings is observed to possess its maximum value across the examined range due to the presence of boron and tungsten. The nanohardness and scratch hardness of untreated Ni–B–Mo coatings increase with concentration level in the coating bath but remained lower than other variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

BM:

Electroless Ni–B–Mo coating

BW:

Electroless Ni–B–W coating

BWM:

Electroless Ni–B–W–Mo coating

EDAX:

Energy dispersive X-ray analysis

HL:

Higher level

LL:

Lower level

ML:

Middle level

NB:

Electroless Ni–B coating

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

References

  1. F. Bülbül, H. Altun, V. Ezirmik, Ö. Küçük, Investigation of structural, tribological and corrosion properties of electroless Ni–B coating deposited on 316L stainless steel. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227(6), 629–639 (2013). https://doi.org/10.1177/1350650112464928

    Article  Google Scholar 

  2. Y. Wan, Y. Yu, L. Cao, M. Zhang, J. Gao, C. Qi, Corrosion and tribological performance of PTFE-coated electroless nickel boron coatings. Surf. Coat. Technol. 307, 316–323 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.001

    Article  Google Scholar 

  3. T. Miri, D. Seifzadeh, Z. Rajabalizadeh, Electroless Ni–B-MMT nanocomposite on magnesium alloy. Surf. Eng. 37(9), 1194–1205 (2021). https://doi.org/10.1080/02670844.2021.1959287

    Article  Google Scholar 

  4. P. Sahoo, S.K. Das, Tribology of electroless nickel coatings—a review. Mater. Des. 32(4), 1760–1775 (2011). https://doi.org/10.1016/j.matdes.2010.11.013

    Article  Google Scholar 

  5. M. Barman, T.K. Barman, P. Sahoo, Effect of borohydride concentration on tribological and mechanical behavior of electroless Ni–B coatings. Mater. Res. Express 6(12), 126575 (2019). https://doi.org/10.1088/2053-1591/ab58b7

    Article  Google Scholar 

  6. S. Sürdem, C. Eseroğlu, R. Çitak, A parametric study on the relationship between NaBH4 and tribological properties in the nickel–boron electroless depositions. Mater. Res. Express 6(12), 125085 (2019). https://doi.org/10.1088/2053-1591/ab5beb

    Article  Google Scholar 

  7. M. Barman, T.K. Barman, P. Sahoo, Effect of heat-treatment temperature and borohydride concentration on corrosion behaviour of ENB coating. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 237(1), 183–200 (2023). https://doi.org/10.1177/09544062221117677

    Article  Google Scholar 

  8. M. Barman, T.K. Barman, P. Sahoo, Tribo-mechanical characterisation of borohydride reduced Ni–B–W coatings. J. Inst. Eng. India Ser. 1, 1 (2023). https://doi.org/10.1007/s40033-023-00471-0

    Article  Google Scholar 

  9. S. Pal, N. Verma, V. Jayaram, S.K. Biswas, Y. Riddle, Characterization of phase transformation behaviour and microstructural development of electroless Ni–B coating. Mater. Sci. Eng. A 528(28), 8269–8276 (2011). https://doi.org/10.1016/j.msea.2011.07.060

    Article  Google Scholar 

  10. E. Correa, A.A. Zuleta, L. Guerra, M.A. Gómez, J.G. Castaño, F. Echeverría, G.E. Thompson, Tribological behavior of electroless Ni–B coatings on magnesium and AZ91D alloy. Wear 305(1–2), 115–123 (2013). https://doi.org/10.1016/j.wear.2013.06.004

    Article  Google Scholar 

  11. V. Vitry, L. Bonin, Increase of boron content in electroless nickel–boron coating by modification of plating conditions. Surf. Coat. Technol. 311, 164–171 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.009

    Article  Google Scholar 

  12. J.N. Balaraju, A. Priyadarshi, V. Kumar, N.T. Manikandanath, P.P. Kumar, B. Ravisankar, Hardness and wear behaviour of electroless Ni–B coatings. Mater. Sci. Technol. 32(16), 1654–1665 (2016). https://doi.org/10.1080/02670836.2015.1137683

    Article  Google Scholar 

  13. V. Vitry, A. Sens, A.F. Kanta, F. Delaunois, Experimental study on the formation and growth of electroless nickel–boron coatings from borohydride-reduced bath on mild steel. Appl. Surf. Sci. 263, 640–647 (2012). https://doi.org/10.1016/j.apsusc.2012.09.126

    Article  Google Scholar 

  14. R.A. Yildiz, K. Genel, T. Gulmez, Effect of heat treatments for electroless deposited Ni–B and Ni–WB coatings on 7075 Al alloy. Int. J. Mater. Mech. Manufact. 5(2), 83–86 (2017). https://doi.org/10.18178/ijmmm.2017.5.2.295

    Article  Google Scholar 

  15. V. Vitry, A.F. Kanta, F. Delaunois, Mechanical and wear characterization of electroless nickel–boron coatings. Surf. Coat. Technol. 206(7), 1879–1885 (2011). https://doi.org/10.1016/j.surfcoat.2011.08.008

    Article  Google Scholar 

  16. C. Domínguez-Ríos, A. Hurtado-Macias, R. Torres-Sanchez, M.A. Ramos, J. Gonzalez-Hernandez, Measurement of mechanical properties of an electroless Ni–B coating using nanoindentation. Ind. Eng. Chem. Res. 51(22), 7762–7768 (2012). https://doi.org/10.1021/ie201760g

    Article  Google Scholar 

  17. M. Barman, T.K. Barman, P. Sahoo, Tribo-mechanical characterization of ENB alloy coatings: effect of heat-treatment temperature and sodium borohydride concentration. Facta Univ. Ser. Mech. Eng. 1, 1 (2022). https://doi.org/10.22190/FUME220814041B

    Article  Google Scholar 

  18. I.G. Serin, A. Göksenli, B. Yüksel, R.A. Yildiz, Effect of annealing temperature on the corrosion resistance of electroless Ni–B–Mo coatings. J. Mater. Eng. Perform. 24, 3032–3037 (2015). https://doi.org/10.1007/s11665-015-1568-0

    Article  Google Scholar 

  19. I.G. Serin, A. Göksenli, Effect of annealing temperature on hardness and wear resistance of electroless Ni–B–Mo coatings. Surf. Rev. Lett. 22(05), 1550058 (2015). https://doi.org/10.1142/S0218625X15500584

    Article  Google Scholar 

  20. M.G. Hosseini, S. Ahmadiyeh, A. Rasooli, S. Khameneh-Asl, Pulse plating of Ni–WB coating and study of its corrosion and wear resistance. Metall. Mater. Trans. A 50, 5510–5524 (2019). https://doi.org/10.1007/s11661-019-05444-1

    Article  Google Scholar 

  21. A. Mukhopadhyay, T.K. Barman, P. Sahoo, Effect of heat treatment on tribological behavior of electroless Ni–B–Mo coatings at different operating temperatures. SILICON 10, 1203–1215 (2018). https://doi.org/10.1007/s12633-017-9594-1

    Article  Google Scholar 

  22. A. Mukhopadhyay, T.K. Barman, P. Sahoo, Tribological characteristics of electroless Ni–B–Mo coatings at different operating temperatures. Surf. Rev. Lett. 26(04), 1850175 (2019). https://doi.org/10.1142/S0218625X18501755

    Article  Google Scholar 

  23. V. Nemane, S. Chatterjee, Scratch and sliding wear testing of electroless Ni–B–W coating. J. Tribol.Tribol. 142(2), 021705 (2020). https://doi.org/10.1115/1.4045165

    Article  Google Scholar 

  24. A.I. Aydeniz, A. Göksenli, G. Dil, F. Muhaffel, C. Calli, B. Yüksel, Electroless Ni–BW coatings for improving hardness, wear and corrosion resistance. Mater. Tehnol. 47(6), 803–806 (2013)

    Google Scholar 

  25. R.A. Yildiz, A. Göksenli, B.H. Yüksel, F. Muhaffel, A. Aydeniz, Effect of annealing temperature on the corrosion resistance of electroless produced Ni–BW coatings. Adv. Mater. Res. 651, 263–268 (2013). https://doi.org/10.4028/www.scientific.net/AMR.651.263

    Article  Google Scholar 

  26. A.B. Radwan, R.A. Shakoor, A. Popelka, Improvement in properties of Ni–B coatings by the addition of mixed oxide nanoparticles. Int. J. Electrochem. Sci.Electrochem. Sci. 10(9), 7548–7562 (2015). https://doi.org/10.1016/S1452-3981(23)17370-6

    Article  Google Scholar 

  27. V. Niksefat, M. Ghorbani, Mechanical and electrochemical properties of ultrasonic-assisted electroless deposition of Ni–B–TiO2 composite coatings. J. Alloy. Compd. 633, 127–136 (2015). https://doi.org/10.1016/j.jallcom.2015.01.250

    Article  Google Scholar 

  28. M. Barman, T.K. Barman, P. Sahoo, Corrosion behaviour of borohydride reduced Ni–B, Ni–B–W, Ni–B–Mo, Ni–B–W–Mo coatings with varying composition: a comparison. J. Inst. Eng. Ser. D (2023). https://doi.org/10.1007/s40033-023-00574-8

    Article  Google Scholar 

  29. M. Barman, T.K. Barman, P. Sahoo, Tribological behavior of electroless Ni–B ternary and quaternary coatings with inclusion of W and Mo. PhysicaScripta. 99, 025924 (2023). https://doi.org/10.1088/1402-4896/ad19bc

    Article  Google Scholar 

  30. A. Mukhopadhyay, T.K. Barman, P. Sahoo, J.P. Davim, Comparative study of tribological behavior of electroless Ni–B, Ni–B–Mo, and Ni–B–W coatings at room and high temperatures. Lubricants 6(3), 67 (2018). https://doi.org/10.3390/lubricants6030067

    Article  Google Scholar 

  31. M. Barman, T.K. Barman, P. Sahoo, Tribo-mechanical behaviour of electroless Ni–B–Mo coatings with varying bath composition. Eng. Res. Express 5, 025072 (2023). https://doi.org/10.1088/2631-8695/acdd52

    Article  Google Scholar 

  32. V. Vitry, J. Hastir, A. Mégret, S. Yazdani, M. Yunacti, L. Bonin, Recent advances in electroless nickel–boron coatings. Surf. Coat. Technol. 429, 127937 (2022). https://doi.org/10.1016/j.surfcoat.2021.127937

    Article  Google Scholar 

  33. F. Madah, C. Dehghanian, A.A. Amadeh, Investigations on the wear mechanisms of electroless Ni–B coating during dry sliding and endurance life of the worn surfaces. Surf. Coat. Technol. 282, 6–15 (2015). https://doi.org/10.1016/j.surfcoat.2015.09.003

    Article  Google Scholar 

  34. V. Vitry, A. Sens, & F. Delaunois. (2014). Comparison of various electroless nickel coatings on steel: structure, hardness and abrasion resistance. in Materials Science Forum (Vol. 783, pp. 1405–1413). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/msf.783-786.1405

  35. J.N. Balaraju, N. Raman, N.T. Manikandanath, Nanocrystalline electroless nickel poly-alloy deposition: incorporation of W and Mo. Trans. IMF 92(3), 169–176 (2014). https://doi.org/10.1179/0020296713Z.000000000123

    Article  Google Scholar 

  36. V. Nemane, V. Sharma, S. Chatterjee, Tribological electroless ternary Ni–BW coatings: a suitable alternative to hard chromium coatings. J. Tribol.Tribol. 144(12), 121401 (2022). https://doi.org/10.1115/1.4055409

    Article  Google Scholar 

  37. R. Agrawal, A. Mukhopadhyay, Development of Ni–B electroless coating from stabilizer free bath and characterization of high temperature tribological behaviour, scratch and corrosion resistance. Surf. Topogr. Metrol. Prop.Topogr. Metrol. Prop. 10(4), 045028 (2022). https://doi.org/10.1088/2051-672X/aca784

    Article  Google Scholar 

  38. A. Mukhopadhyay, T.K. Barman, P. Sahoo, Effect of heat treatment on the characteristics of electroless Ni–B, Ni–BW and Ni–B–Mo coatings. Mater. Today Proc. 5(2), 3306–3315 (2018). https://doi.org/10.1016/j.matpr.2017.11.573

    Article  Google Scholar 

  39. A. Mukhopadhyay, T.K. Barman, P. Sahoo, Effect of heat treatment on microstructure and corrosion resistance of Ni–BW–Mo coating deposited by electroless method. Surf. Rev. Lett. 25(08), 1950023 (2018). https://doi.org/10.1142/S0218625X19500239

    Article  Google Scholar 

  40. S. Yazdani, F. Mahboubi, Comparison between microstructure, wear behavior, and corrosion resistance of plasma-nitrided and vacuum heat-treated electroless Ni–B coating. J. Bio Tribo-Corros. 5, 1–11 (2019). https://doi.org/10.1007/s40735-019-0264-2

    Article  Google Scholar 

  41. A. Mukhopadhyay, T.K. Barman, P. Sahoo, J.P. Davim, Tribological characteristics of electroless Ni–BW–Mo coatings under dry sliding condition. J. Manuf. Technol. Res. 11(1/2), 13–23 (2019)

    Google Scholar 

  42. M. Lekka, R. Offoiach, A. Lanzutti, M.Z. Mughal, M. Sebastiani, E. Bemporad, L. Fedrizzi, Ni–B electrodeposits with low B content: effect of DMAB concentration on the internal stresses and the electrochemical behaviour. Surf. Coat. Technol. 344, 190–196 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.018

    Article  Google Scholar 

  43. L. Bonin, V. Vitry, Mechanical and wear characterization of electroless nickel mono and bilayers and high boron-mid phosphorus electroless nickel duplex coatings. Surf. Coat. Technol. 307, 957–962 (2016). https://doi.org/10.1016/j.surfcoat.2016.10.021

    Article  Google Scholar 

  44. A. Mukhopadhyay, T.K. Barman, P. Sahoo, Tribological behavior of electroless Ni-B-W coating at room and elevated temperatures. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 232(11), 1450–1466 (2018). https://doi.org/10.1177/1350650118755781

    Article  Google Scholar 

  45. X. Liu, F. Yuan, Y. Wei, Grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Appl. Surf. Sci. 279, 159–166 (2013). https://doi.org/10.1016/j.apsusc.2013.04.062

    Article  Google Scholar 

  46. S. Arias, J.G. Castaño, E. Correa, F. Echeverría, M. Gómez, Effect of heat treatment on tribological properties of Ni–B coatings on low carbon steel: wear maps and wear mechanisms. J. Tribol.Tribol. 141(9), 091601 (2019). https://doi.org/10.1115/1.4043906

    Article  Google Scholar 

  47. S. Pal, R. Sarkar, V. Jayaram, Characterization of thermal stability and high-temperature tribological behavior of electroless Ni–B coating. Metall. Mater. Trans. A 49, 3217–3236 (2018). https://doi.org/10.1007/s11661-018-4599-y

    Article  Google Scholar 

  48. A. Mukhopadhyay, T.K. Barman, P. Sahoo, Wear and friction characteristics of electroless Ni–BW coatings at different operating temperatures. Mater. Res. Express 5(2), 026526 (2018). https://doi.org/10.1088/2053-1591/aaae5a

    Article  Google Scholar 

  49. L. Bonin, V. Vitry, F. Delaunois, Inorganic salts stabilizers effect in electroless nickel–boron plating: stabilization mechanism and microstructure modification. Surf. Coat. Technol. 401, 126276 (2020). https://doi.org/10.1016/j.surfcoat.2020.126276

    Article  Google Scholar 

  50. M. Yunacti, A. Mégret, M.H. Staia, A. Montagne, V. Vitry, Characterization of electroless nickel–boron deposit from optimized stabilizer-free bath. Coatings 11(5), 576 (2021). https://doi.org/10.3390/coatings11050576

    Article  Google Scholar 

  51. L. Bonin, V. Vitry, F. Delaunois, The tin stabilization effect on the microstructure, corrosion and wear resistance of electroless Ni–B coatings. Surf. Coat. Technol. 357, 353–363 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.011

    Article  Google Scholar 

  52. L. Bonin, V. Vitry, F. Delaunois, Replacement of lead stabilizer in electroless nickel–boron baths: synthesis and characterization of coatings from bismuth stabilized bath. Sustain. Mater. Technol. 23, e00130 (2020). https://doi.org/10.1016/j.susmat.2019.e00130

    Article  Google Scholar 

  53. S. Banerjee, P. Sarkar, P. Sahoo, Improving corrosion resistance of magnesium nanocomposites by using electroless nickel coatings. Facta Univ. Ser. Mech. Eng. 20(3), 647–663 (2022). https://doi.org/10.22190/FUME210714068B

    Article  Google Scholar 

Download references

Funding

There are no funding sources to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Sahoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, M., Barman, T.K. & Sahoo, P. Effects of W and Mo Concentrations on Mechanical Behaviour of Ni–B Based Coatings—A Comparative Study. J. Inst. Eng. India Ser. D (2024). https://doi.org/10.1007/s40033-024-00696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40033-024-00696-7

Keywords

Navigation