Skip to main content

Advertisement

Log in

Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Werner HW, Garten RPH (1984) A comparative study of methods for thin-film and surface analysis. Rep Prog Phys 47:221–344

    Article  Google Scholar 

  2. Alford TL, Feldman LC, Mayer JW (eds) (2007) Fundamentals of nanoscale film analysis. Springer, New York

  3. Hofmann S (1990) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester

  4. Oswald S, Baunack S (2003) Comparison of depth profiling techniques using ion sputtering from the practical point of view. Thin Solid Films 425:9–19

    Article  CAS  Google Scholar 

  5. Hofmann S (1991) Compositional depth profiling by sputtering. Prog Surf Sci 36(1):35–87

    Article  CAS  Google Scholar 

  6. Oswald S, Reiche R (2001) Binding state information from XPS depth profiling: capabilities and limits. Appl Surf Sci 179(1-4):307–315

    Article  CAS  Google Scholar 

  7. Reniers F, Tewell C (2005) New improvements in energy and spatial (x, y, z) resolution in AES and XPS applications. J Electron Spectrosc Relat Phenom 142:1–25

    Article  CAS  Google Scholar 

  8. Benninghoven A, Rüdenauer FG, Werner HW (eds) (1987) Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications, and trends. Wiley, New York, p 1227, ISBN 0471519456

  9. Chatzitheodoridis E, Kiriakidis G, Lyon I (2002) Secondary ion mass spectrometry and its application to thin film characterization. In: Nalwa HS (ed) Handbook of thin film materials—processing, characterisation and properties. Academic, New York, pp 637–683

  10. Winchester MR, Payling R (2004) Radio-frequency glow discharge spectrometry: a critical review. Spectrochim Acta Part B 59:607–666

    Google Scholar 

  11. Bings NH, Bogaerts A, Broekaert JAC (2008) Atomic spectroscopy. Anal Chem 80(12):4317–4347

    Article  CAS  Google Scholar 

  12. Chu WK, Mayer JW, Nicholet MA (1978) Backscattering spectrometry. Academic, New York

  13. Tesmer JR, Nastasi M (2005) Handbook of modern ion beam material analysis. MRS, Pittsburgh

  14. Bardi U, Chenakin SP, Ghezzi F, Giolli C, Goruppa A, Lavacchi A, Miorin E, Pagura C, Tolstogouzov A (2005) High-temperature oxidation of CrN/AlN multilayer coatings. Appl Surf Sci 252(5):1339–1349

    Google Scholar 

  15. Aouadi SM, Schultze DM, Rohde SL, Wong K-C, Mitchell KAR (2001) Growth and characterization of Cr2N/CrN multilayer coatings. Surf Coat Technol 140(3):269–277

    Article  CAS  Google Scholar 

  16. Miyagawa S, Baba K, Nakao S, Ikeyama M, Saitoh K, Miyagawa Y (1998) Effects of ion beam mixing on the depth profiles of thin metal layer in TiO2. Nucl Instrum Meth B 141(1-4):467–471

    Google Scholar 

  17. Thobor A, Rousselot C, Mikhailov S (2003) Depth profiles study of n(TiN+AlN) bilayers systems by GDOES and RBS techniques. Surf Coat Technol 174–175:351–359

    Article  Google Scholar 

  18. Escobar Galindo R, Forniés E, Gago R, Albella JM (2006) Nanometric resolution in glow discharge optical emission spectroscopy and Rutherford backscattering spectrometry depth profiling of metal (Cr, Al) nitride multilayers. Spectrochim Acta Part B 61(5):545–553

    Article  Google Scholar 

  19. Perez-Mariano J, Caro J, Colominas C (2006) TiN/SiNx submicronic multilayer coatings obtained by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD). Surf Coat Technol 201:4021–4025

    Article  CAS  Google Scholar 

  20. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1999) Impurity distributions in barrier anodic films on aluminium: a GDOES depth profiling study. Electrochim Acta 44:2297–2306

    Google Scholar 

  21. Oladeji IO, Chow L (2005) Synthesis and processing of CdS/ZnS multilayer films for solar cell application. Thin Solid Films 474(1-2):77–83

    Article  CAS  Google Scholar 

  22. McIntyre NS, Johnston D, Chauvin WJ, Lau WM, Nietering K, Schuetzle D, Shankar K, Macdonald JE (1985) SIMS depth profiling of multilayer metal-oxide thin films—improved accuracy using a xenon primary ion. Nucl Instrum Meth B 12(3):389–395

    Google Scholar 

  23. Lee HY, Jung WS, Han JG, Seo SM, Kim JH, Bae YH (2005) The synthesis of CrSiN film deposited using magnetron sputtering system. Surf Coat Technol 200(1-4):1026–1030

    Article  CAS  Google Scholar 

  24. Albers T, Neumann M, Lipinsky D, Benninghoven A (1993) XPS and SIMS/SNMS measurements on thin metal oxide layers. Appl Surf Sci 70–71(1):49–52

    Article  Google Scholar 

  25. Rincón C, Zambrano G, Carvajal A, Prieto P, Galindo H, Martínez E, Lousa A, Esteve J (2001) Tungsten carbide/diamond-like carbon multilayer coatings on steel for tribological applications. Surf Coat Technol 148:277

    Article  Google Scholar 

  26. Bubert H, Grallath E, Quentmeier A, Wielunski M, Borucki L (1995) Comparative investigation on copper oxides by depth profiling using XPS, RBS and GDOES. Fresenius J Anal Chem 353:456–463

    Google Scholar 

  27. Escobar Galindo R, Gago R, Lousa A, Albella JM (2009) Comparative depth profiling analysis of nanometre metal multilayers by ion probing techniques. Trends Anal Chem 28(4):494–505

    Article  CAS  Google Scholar 

  28. Wang L, Nie X, Lukitsch MJ, Jiang JC, Cheng YT (2006) Effect of tribological media on tribological properties of multilayer Cr(N)/C(DLC) coatings. Surf Coat Technol 201:4341–4347

    Article  CAS  Google Scholar 

  29. Wang JY, Starke U, Mittemeijer EJ (2009) Evaluation of the depth resolutions of Auger electron spectroscopic, X-ray photoelectron spectroscopic and time-of-flight secondary-ion mass spectrometric sputter depth profiling techniques. Thin Solid Films 517:3402–3407

    Article  CAS  Google Scholar 

  30. Sanz JM, Palacio CY, Martínez Duart JM (1985) Análisis químico de películas delgadas mediante espectroscopías de superficie y sputtering. Afinidad 42:363

    CAS  Google Scholar 

  31. Hofmann S (2000) Ultimate depth resolution and profile reconstruction in sputter profiling with AES and SIMS. Surf Interface Anal 30:228–236

    Article  CAS  Google Scholar 

  32. Cumpson PJ (1995) Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J Electron Spectrosc Relat Phenom 73:25–52

    Google Scholar 

  33. Palacio C, Martínez Duart JM (1983) Deconvolution methods applied to sputter depth profiles at interfaces. Thin Solid Films 105:25–32

    Article  CAS  Google Scholar 

  34. Palacio C, Martínez Duart JM (1985) Correction of the escape depth effect in sputter depth profiles. Thin Solid Films 129:49–51

    Article  Google Scholar 

  35. Palacio C, Ocón P, Herrasti P, Díaz D, Arranz A (2003) XPS and ARXPS study of silver underpotential deposition on platinum in acid solution. J Electroanal Chem 545:53

    Article  CAS  Google Scholar 

  36. Oswald S, Reiche R, Zier M, Baunack S, Wetzig K (2005) Depth profile and interface analysis in the nm range. Appl Surf Sci 252:3–10

    Google Scholar 

  37. Yamamoto H, Yamada Y, Sasase M, Esaka F (2008) Non-destructive depth profile analysis for surface and buried interface of Ge thin film on Si substrate by high-energy synchrotron radiation X-ray photoelectron spectroscopy. J Phys Conf Ser 100:012044

    Google Scholar 

  38. Rincón C, Zambrano G, Carvajal A, Prieto P, Galindo H, Martínez E, Lousa A, Esteve J (2001) Tungsten carbide/diamond-like carbon multilayer coatings on steel for tribological applications. Surf Coat Technol 148:277

    Article  Google Scholar 

  39. Lousa A, Romero J, Martínez E, Esteve J, Montala F, Carreras L (2001) Multilayered chromium/chromium nitride coatings for use in pressure die-casting. Surf Coat Technol 146–147:268–273

    Article  Google Scholar 

  40. Hongo C, Tomita M, Takenaka M, Murakoshi A (2003) Accurate SIMS depth profiling for ultra-shallow implants using backside SIMS. Appl Surf Sci 203–204:264

    Article  Google Scholar 

  41. Vandervorst W (2008) Semiconductor profiling with sub-nm resolution: challenges and solutions. Appl Surf Sci 255:805–812

    Google Scholar 

  42. Wirtz T, Mansilla C, Barrahma R, Verdeil C (2009) Novel floating low-energy ion gun for the storing matter instrument. Nucl Instrum Meth B 267:2583–2585

    Google Scholar 

  43. Sary N, Richard F, Brochon C, Leclerc N, Lévêque P, Audinot J-N, Berson S, Heiser T, Hadziioannou G, Mezzenga R (2009) A new supramolecular route for use of rod-coil block copolymers in photovoltaic applications. Adv Mater (accepted)

  44. Guillot J, Valle N, Migeon H-N (2009) Mg profiling in 5 nm oxide layers by EXLE–SIMS. In: ECASIA 2009, 18–23 Oct 2009, Antalya, Turkey

  45. Takano A, Shimizu Y, Itoh KM (2008) Film thickness determining method of the silicon isotope superlattices by SIMS. Appl Surf Sci 255:1430–1432

    Article  CAS  Google Scholar 

  46. Kudriatsev Y, Villegas A, Gallardo S, Ramirez G, Asomoza R, Mishurnuy V (2008) Cesium ion sputtering with oxygen flooding: experimental SIMS study of work function change. Appl Surf Sci 254:4961–4964

    Google Scholar 

  47. Vandervorst W, Janssens T, Huyghebaert C, Berghmans B (2008) The fate of the (reactive) primary ion: sputtering and desorption. Appl Surf Sci 255:1206–1214

    Google Scholar 

  48. Krantzman KD, Kingsbury DB, Garrison BJ (2007) Cluster induced chemistry at solid surfaces: molecular dynamics simulations of keV C60 bombardment of Si. Nucl Instrum Meth B 255:238–241

    Google Scholar 

  49. Vanhove N, Lievens P, Vandervorst W (2008) Towards quantitative depth profiling with high spatial and high depth resolution. Appl Surf Sci 255:1360–1363

    Article  CAS  Google Scholar 

  50. Vandervorst W (2003) US Patent 20030127591 (10 July 2003)

  51. Thompson K, Larson DJ, Ulfig RM, Bunton JH, Kelly TF (2006) Analyzing Si-based structures in 3D with a laser-pulsed local electrode atom probe. Solid State Technol 49(6):65

    CAS  Google Scholar 

  52. Blavette D, Pareige C, Cadel E, Auger P, Deconihout B (2005) A journey in the atomic-scale microstructure of materials using atom-probe tomography. Chin J Phys 43(1):132–145

    CAS  Google Scholar 

  53. Deconihout B, Vurpillot F, Gault B, Da Costa G, Bouet M, Bostel A, Blavette D, Hideur A, Martel G, Brunei M (2007) Toward a laser assisted wide-angle tomographic atom-probe. Surf Interface Anal 39(2–3):278–282

    Google Scholar 

  54. Kelly TF, Miller MK (2007) Atom probe tomography. Rev Sci Instrum 78(3):31101(1–20)

    Google Scholar 

  55. Teo WB, Hirokawa K (1989) Depth analysis of metal coatings by glow discharge spectrometry with an argon helium gas mixture. Surf Interface Anal 14:143–152

    Google Scholar 

  56. Weiss Z (1990) Depth analysis of nickel thin films on silicon by glow discharge spectroscopy: the interface region. Surf Interface Anal 15:775–780

    Google Scholar 

  57. Weiss Z (1992) Quantitative-evaluation of depth profiles analyzed by glow discharge optical emission spectroscopy: analysis of diffusion processes. Spectrochim Acta Part B 47:859–876

    Article  Google Scholar 

  58. Präßler F, Hoffmann V, Schumann J, Wetzig K (1995) Comparison of depth resolution for direct current and radiofrequency modes in glow discharge optical emission spectrometry. J Anal At Spectrom 10:677–680

    Article  Google Scholar 

  59. Hodoroaba V, Unger WES, Jenett H, Hoffmann V, Hagenhoff B, Kayser S, Wetzig K (2001) Depth profiling of electrically non-conductive layered samples by RF-GDOES and HFM plasma SNMS. Appl Surf Sci 179:30–38

    Article  CAS  Google Scholar 

  60. Payling R, Michler J, Aeberhard M (2002) Quantitative analysis of conductive coatings by radiofrequency-powered glow discharge optical emission spectrometry: hydrogen, d.c. bias voltage and density corrections. Surf Interface Anal 33(6):472–477

    Google Scholar 

  61. Beck U, Reiners G, Wirth Th, Hoffmann V, Präßler F (1996) Multilayer reference coatings for depth profile standards. Thin Solid Films 290–291:57–62

    Article  Google Scholar 

  62. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Impact of RF-GDOES in practical surface analysis. Spectrochim Acta Part B 58:1573–1583

    Article  Google Scholar 

  63. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Radiofrequency GDOES: a powerful technique for depth profiling analysis of thin films. Surf Interface Anal 35:564–574

    Google Scholar 

  64. Shimizu K, Habazaki H, Skeldon P, Thompson GE, Marcus RK (2001) Influence of interfacial depth on depth resolution during GDOES depth profiling analysis of thin alumina films. Surf Interface Anal 31:869–873

    Google Scholar 

  65. Pisonero J, Fernández B, Pereiro R, Bordel N, Sanz-Medel A (2006) Glow discharge spectrometry for direct analysis of thin and ultra-thin solid films. Trends Anal Chem 25:11–18

    Google Scholar 

  66. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1999) Glow discharge optical emission spectrometry (GDOES) depth profiling analysis of anodic alumina films: a depth resolution study. Surf Interface Anal 27:24–28

    Article  CAS  Google Scholar 

  67. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1999) Impurity distributions in barrier anodic films on aluminium: a GDOES depth profiling study. Electrochim Acta 44:2297–2306

    Article  CAS  Google Scholar 

  68. Hoffmann V, Dorka R, Wilken L, Hodoroaba VD, Wetzig K (2003) Present possibilities of thin-layer analysis by GDOES. Surf Interface Anal 35(7):575–582

    Article  CAS  Google Scholar 

  69. Quentmeier A (1997) Sections 7.1 and 7.2. In: Payling R, Jones DG, Bengston A (eds) Glow discharge optical emission spectroscopy. Wiley, New York

  70. Angeli J, Bengston A, Bogaerts A, Hoffmann V, Hodoroaba V, Steers E (2003) Glow discharge optical emission spectrometry: moving towards reliable thin film analysis: a short review. J Anal At Spectrom 18:670–679

    Article  CAS  Google Scholar 

  71. Escobar Galindo R, Forniés E, Albella JM (2005) Interfacial effects during the analysis of multilayer metal coatings by radio-frequency glow discharge optical emission spectroscopy: Part 1. Crater shape and sputtering rate effects. J Anal At Spectrom 20:1108–1115

    Article  CAS  Google Scholar 

  72. Escobar Galindo R, Forniés E, Albella JM (2005) Interfacial effects during the analysis of multilayer metal coatings by radio-frequency glow discharge optical emission spectroscopy: Part 2. Evaluation of depth resolution function and application to thin multilayer coatings. J Anal At Spectrom 20:1116–1120

    Article  CAS  Google Scholar 

  73. Winchester MR, Marcus RK (1992) Emission characteristics of a pulsed, radio-frequency glow discharge atomic emission device. Anal Chem 64(18):2067–2074

    Article  CAS  Google Scholar 

  74. Payling R, Michler J, Aeberhard M, Popov Y (2003) New aspects of quantification in r.f. GDOES. Surf Interface Anal 35(7):583–589

    Article  CAS  Google Scholar 

  75. Nelis TH, Aeberhard M, Hohl M, Rohr L, Michler J (2006) Characterisation of a pulsed rf-glow discharge in view of its use in OES. J Anal At Spectrom 21(2):112–125

    Article  CAS  Google Scholar 

  76. Hoffmann V, Efimova VV, Voronov MV, Smíd P, Steers EBM, Eckert J (2008) Measurement of voltage and current in continuous and pulsed rf and dc glow discharges. J Phys Conf Series 133:012017

    Google Scholar 

  77. Belenguer PH, Ganciu M, Guillot PH, Nelis TH (2009) Pulsed glow discharges for analytical applications. Spectrochim Acta B 64(7):623–641

    Article  Google Scholar 

  78. Yang C, Ingeneri K, Mohill M, Harrison WW (1999) Depth profiling of thin films with pulsed glow discharge atomic emission spectrometry. Anal Chem 71(23):5328–5334

    Article  CAS  Google Scholar 

  79. Oxley E, Yang C, Harrison WW (2000) Quantitative depth analysis using microsecond pulsed glow discharge atomic emission spectrometry. J Anal At Spectrom 15(9):1241–1246

    Article  CAS  Google Scholar 

  80. Schwaller P, Aeberhard M, Nelis T, Fischer A, Thapliyal R, Michler J (2006) Rapid depth profiling of lead zirconate titanate (PZT) thin films by pulsed glow-discharge optical emission spectroscopy. Surf Interface Anal 38:757–760

    Article  CAS  Google Scholar 

  81. Efimova V, Hoffmann V, Eckert J, Abou-Ras D, Dietrich J (2009) Pulsed glow discharge: from electrical parameters to application in GDOES. In: Colloquium Spectroscopicum Int XXXVI, 30 Aug—3 Sept 2009, Budapest, Hungary

  82. Oswald S, Hoffmann V, Ehrlich G (1994) Contributions to computer-aided interpretation of ion sputtering depth profiling. Spectrochim Acta Part B 49:1123–1145

    Article  Google Scholar 

  83. Präßler F, Hoffmann V, Schumann J, Wetzig K (1996) Quantitative depth profiling in glow discharge spectroscopies: a new deconvolution technique to separate effects of an uneven erosion crater shape. Fresenius J Anal Chem 355:840–846

    Google Scholar 

  84. Escobar Galindo R, Albella JM (2008) Modelling of glow discharge optical emission spectroscopy depth profiles of metal (Cr,Ti) multilayer coatings. Spectrochim Acta Part B 63(3):422–430

    Google Scholar 

  85. Klemm D, Stangl M, Peeva A, Hoffmann V, Wetziga K, Eckert J (2008) Analysis of interface impurities in electroplated Cu layers by using GD-OES and TOF-SIMS. Surf Interface Anal 40:418–422

    Google Scholar 

  86. Molchan IS, Thompson GE, Skeldon P, Trigoulet N, Chapon P, Tempez A, Malherbe J, Lobo Revilla L, Bordel N, Belenguer Ph, Nelis T, Zahri A, Therese L, Guillot Ph, Ganciu M, Michleri J, Hohl M (2009) The concept of plasma cleaning in glow discharge spectrometry. J Anal At Spectrom 24:734–741

    Article  CAS  Google Scholar 

  87. Grötzschel R, Klein Ch, Kruse O (2001) The Rossendorf broad-range magnetic spectrometer for high resolution RBS and NRA. Nucl Instrum Meth B 183:3–9

  88. Kimura K, Joumori S, Oota Y, Nakajima K, Suzuki M (2004) High-resolution RBS: a powerful tool for atomic level characterization. Nucl Instrum Meth B 219–220:351–357

  89. Arnoldbik WM, Wolfswinkel W, Inia DK, Verleun VCG, Lobner S, Reinders JA, Labohm F, Boerma DO (1996) A high resolution magnetic spectrograph for ion beam analysis. Nucl Instrum Meth B 118:566–572

    Google Scholar 

  90. Andrzejewski R, Lucas J, Guirao A, Gordillo N, Boerma DO (2006) A wide-angle magnetic spectrograph of a novel design. Nucl Instrum Meth B 249:939–942

    Google Scholar 

  91. Grötzschel R, Klein C, Mäder M (2004) RBS with high depth resolution using small magnetic spectrometers. Nucl Instrum Meth B 219–220:344–350

  92. Nagel R, Alof C, Balogh AG, Arnoldbik WM, Boerma DO (2001) Study of magnetic multilayers by RBS with nanometer resolution. Nucl Instrum Meth B 183:140–145

    Google Scholar 

  93. Kimura K, Mannami M (1996) RBS with monolayer resolution. Nucl Instrum Meth B 113:270–274

    Google Scholar 

  94. Nakajima K, Joumori S, Suzuki M, Kimura K, Osipowicz T, Tok KL, Zheng JZ, See A, Zhang BC (2003) Strain profiling of HfO2/Si(001) interface with high-resolution Rutherford backscattering spectroscopy. Appl Phys Lett 83:296

    Article  CAS  Google Scholar 

  95. Sakai W, Nakajima K, Suzuki M, Kimura K, Brijs B (2006) Observation of the interfacial layer in HfO2 (10 nm)/Si by high-resolution RBS in combination with grazing angle sputtering. Nucl Instrum Meth B 249:238–241

    Google Scholar 

  96. Suzuki M, Takashima A, Koyama M, Iijima R, Ino T, Takenaka M (2004) Characterization of Si(1 0 0)/HfSiON interface. Nucl Instrum Meth B 219–220:851–855

  97. Nakajima K, Suzuki M, Kimura K, Yamamoto M, Teramoto A, Ohmi T, Hattori T (2006) Lattice distortion at SiO2/Si(001) interface studied with high-resolution Rutherford backscattering spectroscopy/channeling. Jpn J Appl Phys 45:2467

    Google Scholar 

  98. Hosoi S, Nakajima K, Suzuki M, Kimura K, Shimizu Y, Fukatsu S, Itoh KM, Uematsu M, Kageshima H, Shiraishi K (2006) Observation of Si emission during thermal oxidation of Si(0 0 1) with high-resolution RBS. Nucl Instrum Meth 249:390–393

    Google Scholar 

  99. Yamamoto T, Miyamoto T, Karen A (2004) Quantification of nitrogen profiles in HfSiON films for gate dielectrics. Appl Surf Sci 231–232:561–564

    Article  Google Scholar 

  100. Kimura K, Nakajima K, Zha M, Nohira H, Hattori T, Kobata M, Ikenaga E, Jin Kim J, Kobayashi K, Conarde T, Vandervorst W (2008) Combination of high-resolution RBS and angle-resolved XPS: accurate depth profiling of chemical states. Surf Interface Anal 40(3-4):423–426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank K. Kimura (Kyoto University), P. Chapon (Horiba Jobin Yvon), J. Wang (Max Planck Institute for Metals Research), V. Hofmmann (IFW Dresden) and R. Grötzschel (Forschungszentrum Dresden-Rossendorf) for their valuable comments during the preparation of the manuscript. This work was financially supported by the Spanish Ministry of Science and Innovation (projects MAT2008-06618-C02-01, FUNCOAT CSD2008-00023 and RyC2007-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Escobar Galindo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar Galindo, R., Gago, R., Duday, D. et al. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES. Anal Bioanal Chem 396, 2725–2740 (2010). https://doi.org/10.1007/s00216-009-3339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3339-y

Keywords

Navigation