Skip to main content
Log in

Fast detection of triacetone triperoxide (TATP) from headspace using planar solid-phase microextraction (PSPME) coupled to an IMS detector

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Triacetone triperoxide (TATP) is a high explosive synthesized from easily available reactants making it accessible for illicit uses. In this study, fast detection of TATP is achieved using a novel planar solid-phase microextraction (PSPME) as a preconcentration and sampling device for headspace analysis offering improved sensitivity and reduced sampling time over the conventional fiber-based solid-phase microextraction (SPME) when followed by ion mobility spectrometer (IMS) detection. Quantitation and comparison of the retention capabilities of PSPME as compared to the commercially available SPME were determined using TATP standards and analyzed using gas chromatography–mass spectrometry for SPME analysis and a commercial IMS with no instrumental modification for PSPME. Static and dynamic headspace extractions were used and compared for PSPME extractions, in which low milligram quantities of TATP were detected within 30 s of static mode sampling and less than 5 s in the dynamic mode sampling for PSPME–IMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beveridge A (1998) Forensic investigation of explosions. Taylor & Francis, New York

    Google Scholar 

  2. Naughton P (2005) TATP is suicide bombers' weapon of choice. Times Online

  3. Townsend M (2006) The real story of 7/7. The Observer

  4. Schulte-Ladbeck R, Vogel M, Karst U (2006) Recent methods for the determination of peroxide-based explosives. Anal Bioanal Chem 386(3):559–565. doi:10.1007/s00216-006-0579-y

    Article  CAS  Google Scholar 

  5. Burks RM, Hage DS (2009) Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem 395(2):301–313. doi:10.1007/s00216-009-2968-5

    Article  CAS  Google Scholar 

  6. Buttigieg GA, Knight AK, Denson S, Pommier C, Bonner Denton M (2003) Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry. Forensic Sci Int 135(1):53–59

    Article  CAS  Google Scholar 

  7. Schulte-Ladbeck R, Kolla P, Karst U (2002) A field test for the detection of peroxide-based explosives. Analyst 127(9):1152–1154

    Article  CAS  Google Scholar 

  8. Schulte-Ladbeck R, Edelmann A, Quintas G, Lendl B, Karst U (2006) Determination of peroxide-based explosives using liquid chromatography with on-line infrared detection. Anal Chem 78(23):8150–8155. doi:10.1021/ac0609834

    Article  CAS  Google Scholar 

  9. Stambouli A, El Bouri A, Bouayoun T, Bellimam MA (2004) Headspace-GC/MS detection of TATP traces in post-explosion debris. Forensic Sci Int 146(Supplement 1):S191–S194

    Article  CAS  Google Scholar 

  10. Wackerbarth H, Salb C, Gundrum L, Niederkruger M, Christou K, Beushausen V, Viol W (2010) Detection of explosives based on surface-enhanced Raman spectroscopy. Appl Opt 49(23):4362–4366

    Article  CAS  Google Scholar 

  11. Cotte-Rodriguez I, Hernandez-Soto H, Chen H, Cooks RG (2008) In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Anal Chem 80(5):1512–1519. doi:10.1021/ac7020085

    Article  CAS  Google Scholar 

  12. Sovova K, Dryahina K, Spanel P, Kyncl M, Civis S (2010) A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV–vis spectrometry. Analyst 135(5):1106–1114

    Article  CAS  Google Scholar 

  13. Mills A, Grosshans P, Snadden E (2009) Hydrogen peroxide vapour indicator. Sensors Actuators B-Chem 136(2):458–463. doi:10.1016/j.snb.2008.12.032

    Article  Google Scholar 

  14. Girotti S, Ferri E, Maiolini E, Bolelli L, D'Elia M, Coppe D, Romolo FS (2011) A quantitative chemiluminescent assay for analysis of peroxide-based explosives. Anal Bioanal Chem 400(2):313–320. doi:10.1007/s00216-010-4626-3

    Article  CAS  Google Scholar 

  15. Lu DL, Cagan A, Munoz RAA, Tangkuaram T, Wang J (2006) Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue ‘artificial-peroxidase’ modified electrode. Analyst 131(12):1279–1281. doi:10.1039/b613092e

    Article  CAS  Google Scholar 

  16. Lin HW, Suslick KS (2010) A colorimetric sensor array for detection of triacetone triperoxide vapor. J Am Chem Soc 132(44):15519–15521. doi:10.1021/ja107419t

    Article  CAS  Google Scholar 

  17. Xie YQ, Cheng IF (2010) Selective and rapid detection of triacetone triperoxide by double-step chronoamperometry. Microchem J 94(2):166–170. doi:10.1016/j.microc.2009.10.016

    Article  CAS  Google Scholar 

  18. Walter MA, Pfeifer D, Kraus W, Emmerling F, Schneider RJ, Panne U, Weller MG (2010) Triacetone triperoxide (TATP): Hapten design and development of antibodies. Langmuir 26(19):15418–15423. doi:10.1021/la1018339

    Article  CAS  Google Scholar 

  19. Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S, Vadlamannati S (2008) Detection of explosives in hair using ion mobility spectrometry. J Forensic Sci 53(3):690–693. doi:10.1111/j.1556-4029.2008.00719.x

    Article  CAS  Google Scholar 

  20. Räsänen R-M, Nousiainen M, Peräkorpi K, Sillanpää M, Polari L, Anttalainen O, Utriainen M (2008) Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography–mass spectrometry. Anal Chim Acta 623(1):59–65

    Article  Google Scholar 

  21. Hilton CK, Krueger CA, Midey AJ, Osgood M, Wu J, Wu C (2010) Improved analysis of explosives samples with electrospray ionization-high resolution ion mobility spectrometry (ESI-HRIMS). Int J Mass spectrom 298(1–3):64–71. doi:10.1016/j.ijms.2010.08.011

    CAS  Google Scholar 

  22. Cook GW, LaPuma PT, Hook GL, Eckenrode BA (2010) Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents. J Forensic Sci 55(6):1582–1591. doi:10.1111/j.1556-4029.2010.01522.x

    Article  CAS  Google Scholar 

  23. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Guerra-Diaz P, Gura S, Almirall JR (2010) Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives. Anal Chem 82(7):2826–2835. doi:10.1021/ac902785y

    Article  CAS  Google Scholar 

  25. Isetun S, Nilsson U (2005) Dynamic field sampling of airborne organophosphate triesters using solid-phase microextraction under equilibrium and non-equilibrium conditions. Analyst 130(1):94–98

    Article  CAS  Google Scholar 

  26. Tollbäck J, Isetun S, Colmsjö A, Nilsson U (2010) Dynamic non-equilibrium SPME combined with GC, PICI, and ion trap MS for determination of organophosphate esters in air. Anal Bioanal Chem 396(2):839–844. doi:10.1007/s00216-009-3221-y

    Article  Google Scholar 

  27. Pawliszyn J (ed) (1999) Applications of solid phase microextraction. Royal Society of Chemistry, Cambridge

    Google Scholar 

  28. Stott WR, Nacson S, Eustatiu GI (2006) Chemical identification of peroxide-based explosives

  29. Oxley JC, Smith JL, Chen H (2002) Decomposition of a multi-peroxidic compound: triacetone triperoxide (TATP). Propellants Explos Pyrotech 27(4):209–216. doi:10.1002/1521-4087(200209)27:4<209::aid-prep209>3.0.co;2-j

    Article  CAS  Google Scholar 

  30. Marr AJ, Groves DM (2003) Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int Ion Mobil Spectrom 6(2):59–62

    CAS  Google Scholar 

  31. Ewing RG, Waltman MJ, Atkinson DA (2011) Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization. Anal Chem: Null-Null. doi:10.1021/ac200466v

Download references

Acknowledgments

The development of PSPME was supported by Award No. 2006-DN-BX-K027 from the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. The authors would also like to acknowledge the University of Rhode Island DHS CoE for financial support for this project, and Dr. Jeannette Perr and Dr. Patricia Diaz for helpful discussions. In addition, the authors would also like to acknowledge Dr. Raymond S. Addleman from the Pacific Northwest National Laboratory for the determination of the PSPME surface area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose R. Almirall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, W., Young, M., Canino, J. et al. Fast detection of triacetone triperoxide (TATP) from headspace using planar solid-phase microextraction (PSPME) coupled to an IMS detector. Anal Bioanal Chem 403, 401–408 (2012). https://doi.org/10.1007/s00216-012-5878-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5878-x

Keywords

Navigation