Skip to main content
Log in

Chlamydomonas reinhardtii genetic variants as probes for fluorescence sensing system in detection of pollutants

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The unicellular green alga Chlamydomonas reinhardtii is employed here for the setup of a biosensor demonstrator based on multibiomediators for the detection of herbicides. The detection is based on the activity of photosystem II, the multienzymatic chlorophyll–protein complex located in the thylakoid membrane that catalyzes the light-dependent photosynthetic primary charge separation and the electron transfer chain in cyanobacteria, algae, and higher plants. Several C. reinhardtii mutants modified on the D1 photosystem II protein are generated by site-directed mutagenesis and experimentally tested for the development of a biosensor revealing the modification of the fluorescence parameter (1 − V J) in the presence of herbicides. The A250R, A250L, A251C, and I163N mutants are highly sensitive to the urea and triazine herbicide classes; the newly generated F255N mutant is shown to be especially resistant to the class of urea. It follows that the response of the multibiomediators is associated to a particular herbicide subclass and can be useful to monitor several species of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giardi MT, Pace E (2005) Trends Biotech 25:253–267

    Google Scholar 

  2. Giardi MT, Rigoni F, Barbato R (1992) Plant Physiol 100:1948–1954

    Article  CAS  Google Scholar 

  3. Oettmeier W (1999) Cell Mol Life Sci 10:1255–77

    Article  Google Scholar 

  4. Vermaas WFJ, Renger G, Arntzen CJ (1984) Z Natureforsch 39C:368–373

    CAS  Google Scholar 

  5. Johanningmeier U (1993) Plant Mol Biol 22:91–99

    Article  CAS  Google Scholar 

  6. Tibuzzi A, Rea G, Pezzotti G, Esposito D, Johanningmeier U, Giardi MT (2007) J Phys Condens Matter 19:395006–395018

    Article  CAS  Google Scholar 

  7. Strasser BJ, Strasser RJ (1995) In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic, Dordrecht

    Google Scholar 

  8. Harris EH (1989) In The Chlamydomonas sourcebook: A comprehensive Guide to biology and laboratory use E. Harris Ed., pp. 25–66, Academic Press, San Antonio (ISBN 0-12.326880)

  9. Johanningmeier U, Sopp G, Brauner M, Altenfeld U, Orawski G, Oettmeier W (2000) Pestic Biochem Physiol 66:9–19

    Article  CAS  Google Scholar 

  10. Preiss S, Schrader S, Johanningmeier U (2001) Eur J Biochem 268:4562–4569

    Article  CAS  Google Scholar 

  11. Misra AN, Srivastava A, Strasser RJ (2001) J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  12. Christensen MG, Teicher HB, StreibigJens C (2003) Pest Manag Sci 59:1303–1310

    Article  CAS  Google Scholar 

  13. Koblizek M, Maly J, Masojidek J, Komenda J, Kucera T, Giardi MT, Mattoo AK, Pilloton R (2002) Biotechnol Bioeng 78:110–116

    Article  CAS  Google Scholar 

  14. Wilski S, Johanningmeier U, Herte S, Oettmeier W (2006) Pestic Biochem Physiol 84:157–164

    Article  CAS  Google Scholar 

  15. Govindjee (1995) J Plant Physiol 22:131–160

    CAS  Google Scholar 

  16. Govindjee, Seufferheld MJ (2002) Funct Plant Biol 29:1141–1155

    Article  CAS  Google Scholar 

  17. Maxwell K, Johnson GN (2000) J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  18. Giardi MT, Esposito D, Leonardi C, Mattoo A, Margonelli A, Angeli G (2006) EU patent 01830148.1-2204

  19. Giardi MT, Pace E (2006) Biotechnological application of photosynthetic proteins: biochips, biosensors and biodevices. Landes Bioscience, Austin, pp 147–154

    Book  Google Scholar 

  20. Campanella L, Cubadda F, Sammartino M, Saoncella A (2000) Water Res 35(1):69–76

    Article  Google Scholar 

  21. Durrieu C, Tran-Minh C, Chovelon JM, Barthet L, Chouteau1 C, Védrine C (2006) J Appl Phys 36:205–209

    Google Scholar 

  22. Podola B, Podola M (2003) J Appl Phycol 15(5):415–424

    Article  CAS  Google Scholar 

  23. Touloupakis E, Giannoudi L, Piletsky SA, Guzzella L, Pozzoni F, Giardi MT (2005) Biosens Bioelectron 20(10):1984–1992

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from MIUR Art. 297, “AGROBIOSENS” project, and partially by the EU FP7-SME-2008-1 project “BEEP-C-EN” for the benefit of SMEs. The biosensor instrument was adapted from an ASI (Italian Space Agency) space flight prototype in a Space–Earth technology transfer process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Scognamiglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scognamiglio, V., Raffi, D., Lambreva, M. et al. Chlamydomonas reinhardtii genetic variants as probes for fluorescence sensing system in detection of pollutants. Anal Bioanal Chem 394, 1081–1087 (2009). https://doi.org/10.1007/s00216-009-2668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2668-1

Keywords

Navigation