Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Photosystem II (PSII) is the supramolecular pigment-protein complex in the chloroplast, which catalyses the light-induced transfer of electrons from water to plastoquinone in a process that evolves oxygen. The PSII complex is also known to bind several groups of herbicides. In the world, pesticide pollution of soil and ground water is a widespread problem. The objective of our work is the development of biosensors using PSII isolated from photosynthetic organisms to monitor polluting chemicals. This should lead to the set-up of a low cost, easy-to-use apparatus, able to reveal specific herbicides, and eventually, a wide range of organic compounds present in industrial and urban effluents, sewage sludge, landfill leak-water, ground water, and irrigation water. Within the framework of sustainable development, a number of developed countries will have to make strong efforts during the coming years to meet the directives and standards in the areas of environmental monitoring, pollution control, waste management, water and soil quality.

In this study we provide an overview of the systems available for the bioassay of herbicide pollutants using biosensors that are based on the photochemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yatsenko V. Determining the characteristics of water pollutants by neural sensors and pattern-recognition methods. J Chromatogr 1996; A722(1–2):233–243.

    Article  Google Scholar 

  2. Mattoo A, Giardi MT, Raskind A et al. Dynamic metabolism of photosystem II reaction center proteins and pigments. A review. Physiol Plant 1999; 107:454–461.

    Article  CAS  Google Scholar 

  3. Giardi MT, Rigoni F, Barbato R. Photosystem II core phosphorylation heterogeneity, differential herbicide binding, and regulation of electron transfer in photosystem II preparations from spinach. Plant Physiol 1992; 100:1948–1054.

    PubMed  CAS  Google Scholar 

  4. Oettmeier W. Herbicide resistance and supersensitivity in photosystem II. A review. CMLS 1999; 55:1255–1277.

    PubMed  CAS  Google Scholar 

  5. Giardi MT. Phosphorylation and disassembly of photosystem II as an early stage of photoinhibition. Planta 1993; 190:107–113.

    Article  CAS  Google Scholar 

  6. Pesticide Chemistry. In: Frehse H, ed. Weinheim, New York, Basel, Cambridge: VCH, Weinheim, 1991.

    Google Scholar 

  7. Draber W, Tietjen K, Kluth JF et al. Herbicides in photosynthesis research. Angew Chem Int Ed Engl 1991; 3:1621–1633.

    Article  Google Scholar 

  8. European Communities, Drinking Water Directive L229, 1980:11.

    Google Scholar 

  9. US Federal Register, 1986, 51 FR 36634.

    Google Scholar 

  10. US EPA. Atrazine: Health Advisory. Washington DC: Office of Drinking Water, US EPA, 1988, (http://www.epa.gov/oppbead1/pestsales/97pestsales/table8.htm).

    Google Scholar 

  11. Moreland DE. Mechanisms of action of herbicides. Annu Rev Plant Physiol 1980; 31:597–638.

    Article  CAS  Google Scholar 

  12. Geiken B, Masojídek J, Rizzuto M et al. Incorporation of [35S]methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environ 1998; 21:1265–1273.

    Article  CAS  Google Scholar 

  13. Pacakova’ V, Stulik K, Jiskra J. High-performance separation in the determination of triazine herbicides and their residues. J Chromatogr 1996; 754:17–35.

    Article  CAS  Google Scholar 

  14. Bushway RJ, Perkins LB, Fukal L et al. Comparison of enzyme-linked immunosorbent assay and high-performance liquid chromatography for the analysis of Atrazine in water from Czechoslovakia. Arch Environ Contam Toxicol 1991; 21:365–370.

    Article  PubMed  CAS  Google Scholar 

  15. Schneider P, Hammock BD. Influence of the ELISA format and the hapten-enzyme conjugate on the sensitivity of an immunoassay for s-triazine herbicides using monoclonal antibodies. J Agric Food Chem 1992; 40:525–530.

    Article  CAS  Google Scholar 

  16. Giersch T. A new monoclonal antibody for the sensitive detection of Atrazine with immunoassay in microtiter plate and dipstick format. J Agric Food Chem 1993; 41:1006–1011.

    Article  CAS  Google Scholar 

  17. Iwanzik W, Egli H. Comparison of bioassay and chemical analysis for triasulfuron quantification in soil samples: Proceedings. Brighton Crop Protection Conference 1989; 3:1145–1150.

    Google Scholar 

  18. Rawson DM, Willmer AJ, Cardosi MF. The development of whole cell biosensors for on-line screening of herbidice pollution of surface waters. Toxicity Assess 1987; 2:325–340.

    Article  CAS  Google Scholar 

  19. Pandard P, Rawson DM. An amperometric algal biosensor for herbicide detection employing a carbon cathode oxygen-electrode. Environ Toxicol Water Qual 1993; 8(3):323–333.

    Article  CAS  Google Scholar 

  20. Pandard P, Vasseur P, Rawson DM. Comparison of 2 types of sensors using eukaryotic algae to monitor pollution of aquatic systems. Water Res 1993; 27(3):427–431.

    Article  CAS  Google Scholar 

  21. Preuss M, Hall EAH. Mediated herbicide inhibition in a PET biosensor. Anal Chem. 1995; 67(13):1940–1949.

    Article  CAS  Google Scholar 

  22. Avramescu A, Rouillon R, Carpentier R. Potential for use of a cyanobacterium Synechocyatis sp. Immobilized in poly(vinylalcohol): Application to the detection of pollutants. Biotechnol Tech 1999; 13:559–562.

    Article  CAS  Google Scholar 

  23. Rouillon R, Tocabens M, Carpentier R. A photoelectrochemical cell for detecting pollutant-induced effects on the activity of immobilized cyanobacterium Synechoccuc sp PCC7942. Enz Microb Technol 1999; 25:230–235.

    Article  CAS  Google Scholar 

  24. Rawson DM, Willmer AJ, Turner APF. Whole-cell biosensors for environmental monitoring. Biosensors 1989; 4:299–311.

    Article  PubMed  CAS  Google Scholar 

  25. Haggett BGD. Mathematical-model of toxicity monitoring sensors incorporating microbial whole cells. Analyst 1994; 119(2):197–201.

    Article  PubMed  CAS  Google Scholar 

  26. Arsalane W, Parésys G, Duval JC et al. A new fluorometric device to measure the in vivo chlorophyll a fluorescence yield in microalgae and its use as a herbicide monitor. Eur J Phycol 1993; 28:247–252.

    Article  Google Scholar 

  27. Conrad R, Buchel C, Wilhelm C et al. Changes in yield in in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 1993; 5:505–516.

    Article  CAS  Google Scholar 

  28. Yoneyama K, Nakajima Y, Maejima N et al. Simple and rapid screening method for Photosystem II inhibitory herbicides using photoautotrophically cultured plant cells with chlorophyll fluorescence monitoring. Biosci Biotech Biochem 1993; 57(8):1389–1390.

    Article  CAS  Google Scholar 

  29. Merz D, Geyer M, Moss DA et al. Chlorophyll fluorescence biosensor for the detection of herbicides. Fresenius J Anal Chem 1996; 354:299–305.

    CAS  Google Scholar 

  30. El Jay A, Ducruet JM, Duval JC et al. A high-sensitivity chlorophyll fluorescence assay for monitoring herbicide inhibition of photosystem II in the chlorophyte Selenastrum capricornutum: Comparison with effect on cell growth. Arch Hydrobiol 1997; 140:273–286.

    Google Scholar 

  31. Van der Heever JA, Grobbelaar JU. In vivo chlorophyll a fluorescence of Selenastrum capricornutum as a screening bioassay in toxicity studies. Arch Environ Contam Toxicol 1998; 35:281–286.

    Article  Google Scholar 

  32. Wessels JSC, Van der Veen R. The action of some derivatives of phenylurea and of 3-phenyl-1,1-dimethylurea on the Hill reaction. Biochim Biophys Acta 1956; 19:548–549.

    Article  PubMed  CAS  Google Scholar 

  33. Good NE. Inhibitors of the Hill reaction. Plant Physiol 1961; 36:788–803.

    PubMed  CAS  Google Scholar 

  34. Védrine C, Leclerc JC, Durrieu C et al. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 2003; 18:457–463.

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez M, Sanders CA, Greenbaum E. Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Biosens Bioelectron 2002; 17:843–849.

    Article  PubMed  CAS  Google Scholar 

  36. Vermaas W. Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803: Principles and possible biotechnology applications. J Appl Phycol 1996; 8:263–273.

    Article  CAS  Google Scholar 

  37. Giardi MT, Esposito D, Leonardi C et al. Portable system for selective monitoring of herbicides based on fluorescence and resistant mutants to herbicides. Patent, Upica, Italy: 2000:112.

    Google Scholar 

  38. Nanba O, Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b559. Proc Natl Acad Sci USA 1987; 84:109–112.

    Article  PubMed  CAS  Google Scholar 

  39. Giardi MT, Marder JB, Barber J. Herbicide binding to the isolated Photosystem II reaction centre. Biochim Biophys Acta 1989; 934:64–71.

    Google Scholar 

  40. Franco E, Alessandrelli S, Masojidek J et al. Modulation of D1 protein turnover under cadmium and heat stresses monitored by [35S] methionine incorporation. Plant Science 1999; 144:53–61.

    Article  CAS  Google Scholar 

  41. Trebst A, Draber W. In: Greissbuehler H, ed. Advances in Pesticide Science. Oxford: Pergamon Press, 1979:223.

    Google Scholar 

  42. Pfister K, Steinback KE, Gardner G et al. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci USA 1981; 78:981–985.

    Article  PubMed  CAS  Google Scholar 

  43. Mattoo AK, Pick U, Hoffman-Falk H et al. The rapidly metabolized 32kDa polypeptide of the chloroplast is the “proteinaceous shield” regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc Natl Acad Sci USA 1981; 78:1572–1576.

    Article  PubMed  CAS  Google Scholar 

  44. Giardi MT, Masojidek J, Godde D. Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol Plant 1997; 101:635–642.

    Article  CAS  Google Scholar 

  45. Loranger C, Carpentier R. A fast bioassay for phytotoxicity measurements using immobilized photosynthetic membranes. Biotechnol Bioeng 1994; 44:178–183.

    Article  CAS  PubMed  Google Scholar 

  46. Rouillon R, Tocabens M, Marty JL. Stabilization of chloroplasts by entrapment in polyvinylalcohol bearing styrylpyridinium groups. Anal Lett 1994; 27:2239–2248.

    CAS  Google Scholar 

  47. Koblizek M, Masojidek J, Komenda J et al. A sensitive photosystemII-based biosensor for detection of a class of herbicides. Biotechnol Bioengg 1998; 60:664–669.

    Article  CAS  Google Scholar 

  48. Brewster JD, Lightfield AR. Rapid biorecognition assay for herbicides in biological matrices. Anal Chem 1993; 65:2415–2419.

    Article  PubMed  CAS  Google Scholar 

  49. Brewster JD, Lightfield AR, Bermel PL. Storage and immobilization of photosystem II reaction centers used in an assay for herbicides. Anal Chem 1995; 67:1296–1299.

    Article  CAS  Google Scholar 

  50. Rao KK, Hall DO, Vlachopoulos N et al. Photoelectrochemical response of photosystem II particles immobilized on Dye-derivatized TiO2 films. J Photochem Photobiol B 1990; 5:379–389.

    Article  CAS  Google Scholar 

  51. Thomasset B, Thomasset T, Vejux A et al. Immobilized thylakoids in a cross-linked albumin matrix. Plant Physiol 1982; 70:714–722.

    Article  PubMed  CAS  Google Scholar 

  52. Carpentier R, Loranger C, Chartrand J et al. Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurement. Anal Chim Acta 1989; 249:55–60.

    Article  Google Scholar 

  53. Carpentier R, Lemieux S, Mimeault M et al. A photoelectrochemical cell using immobilized photosynthetic membranes. Bioelectrochem Bioenerg 1991; 22:391–401.

    Article  Google Scholar 

  54. Rouillon R, Mestres JJ, Marty JL. Entrapment of chloroplasts and thylakoids in polyvinylalcohol-SbQ. Optimalization of membrane preparation and storage conditions. Anal Chim Acta 1995; 311:437–442.

    Article  CAS  Google Scholar 

  55. Rouillon R, Sole M, Carpentier R et al. Immobilization of thylakoids in plyvinylalcohol for the detection of herbicides. Sensors and Actuators B 1995; 26–27:477–479.

    Article  Google Scholar 

  56. Rouillon R, Gingras Y, Carpentier R et al. In: Mathis P, ed. Photosynthesis: From Light to Biosphere, Vol. 5. The Netherlands: Kluwer, 1995:933–936.

    Google Scholar 

  57. Komenda J, Masojidek J, Setlikova E. An indication of different functions of CP47 and CP43. In: Argyroudi-Akoyunoglou JH, ed. Regulation of Chloroplast Biogenesis. New York: Plenum Press, 1999:411–415, (NATO ASI series).

    Google Scholar 

  58. Koblizek M, Mela J, Giardi MT et al. Book of abstracts, 2nd workshop on biosensors and biological techniques in environmental analysis. Lund, Sweden: 1998.

    Google Scholar 

  59. Clark LC. Monitor and control of blood and oxygen in tissue. Trans Am Soc Artif Intern Organs 1956; 2:41–48.

    Google Scholar 

  60. Schneider P, Goodrow MH, Gee SJ et al. A highly sensitive and rapid ELISA for the urea herbicides diuron, monuronand linuron. J Agric Food Chem 1994; 42:413–422.

    Article  CAS  Google Scholar 

  61. Alegria G, Dutton PL. Langmuir-Blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers: Preparation, spectrophotometric and electrochemical characterization. Biochim Biophys Acta 1991; 1057:239–257.

    Article  PubMed  CAS  Google Scholar 

  62. Jockers R, Bier FF, Schmid RD. Specific binding of photosynthetic reaction centres to herbicide-modified grating couplers. Anal Chim Acta 1993; 280:53–59.

    Article  CAS  Google Scholar 

  63. Piletskaya E, Piletsky S, Lavrik N et al. Toward the D1 protein application for the development of sensors specific for herbicides. Anal Lett 1998; 31:2577–2589.

    CAS  Google Scholar 

  64. Shao CY, Howe CJ, Porter AJR et al. Novel cyanobacterial biosensor for detection of herbicide. Appl Environ Microbiol 2002; 68:5026–5033.

    Article  PubMed  CAS  Google Scholar 

  65. Hall HR. Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 2002; 4:425–432.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Pace .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Giardi, M.T., Pace, E. (2006). Photosystem II-Based Biosensors for the Detection of Photosynthetic Herbicides. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_13

Download citation

Publish with us

Policies and ethics