Skip to main content
Log in

Specific Features of Technogenic Pollutants Impact on Photosynthetic Activity of Unicellular Cyanobacteria

  • AQUATIC TOXICOLOGY
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The effect of heavy-metal ions (Cd2+, Cr6+, and Cu2+) on cyanobacteria sp. Microcystis and sp. Synechocystis has been studied. Since heavy metals impact causes blocking of light-energy transmission channels and arrest of electron transport in photosynthetic apparatus of cyanobacteria, their influence can be detected within a few hours by fluorescence techniques. In this investigation three standard fluorescence techniques are used: fluorescence spectroscopy, pulsed amplitude modulation fluorimetry, and confocal microscopic spectroscopy. All three used methods showed a decrease in photosynthetic activity for cyanobacterial cells exposed to heavy metals. However, the mechanisms of action for different heavy metals are slightly different. In this paper, we analyze variations in spectroscopic and kinetic properties of emmitted fluorescence for cyanobacterial cultures and single living cells in order to identify a specific mechanism of heavy metals influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Babu, N.G., Sarma, P.A., Attitalla, I.H., and Murthy, S.D.S., Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the cyanobacterium, Spirulina platensis, Acad. J. Plant Sci., 2010, vol. 3, no. 1, p. 46.

    Google Scholar 

  2. Bilitewski, U. and Turner, A., Biosensors in Environmental Monitoring, London: CRC Press, 2000. https://doi.org/10.1201/9781482283532

  3. Clijsters, H. and Van Assche, F., Inhibition of photosynthesis by heavy metals, Photosynth. Res., 1985, vol. 7, no. 1, p. 31. https://doi.org/10.1007/BF00032920

    Article  CAS  PubMed  Google Scholar 

  4. Dallakyan, G.A., Pogosyan, S.I., and Ipatova, V.I., The combined effect of shungite and heavy metals on the growth of microalgae population, Inland Water Biol., 2018, vol. 11, no. 1, pp. 103–107.

    Article  Google Scholar 

  5. De Filippis, L.F., Hampp, R., and Ziegler, H., The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena, Arch. Microbiol., 1981, vol. 128, no. 4, p. 407. https://doi.org/10.1007/BF00405922

    Article  CAS  Google Scholar 

  6. Grigoryeva, N. and Chistyakova, L., Fluorescence microscopic spectroscopy for investigation and monitoring of biological diversity and physiological state of cyanobacterial cultures, in Cyanobacteria, UK: IntechOpen, 2018, p. 11. https://doi.org/10.5772/intechopen.78044

  7. Grigoryeva, N. and Chistyakova, L., Confocal laser scanning microscopy for spectroscopic studies of living photosynthetic cells, in Color Detection, UK: IntechOpen, 2020, p. 39. https://doi.org/10.5772/intechopen.84825

  8. Grigoryeva, N.Yu., Chistyakova, L.V., and Liss, A.A., Spectroscopic techniques for estimation of physiological state of blue-green algae after weak external action, Oceanology, 2018, vol. 58, no. 6, p. 896.

    Article  Google Scholar 

  9. Van der Heever, J.A. and Grobbelaar, J.U., In vivo chlorophyll a fluorescence of Selenastrum capricornutum as a screening bioassay in toxicity studies, Arch. Environ. Contam. Toxicol., 1998, vol. 35, p. 281. https://doi.org/10.1007/PL00006606

    Article  CAS  Google Scholar 

  10. Horcsik, Z.T., Kovacs, L., Laposi, R., et al., Effect of chromium on photosystem 2 in the unicellular green alga, Chlorella pyrenoidosa, Photosynthetica, 2007, vol. 45, p. 65. https://doi.org/10.1007/s11099-007-0010-8

    Article  CAS  Google Scholar 

  11. Huertas, M.J., Lopez-Maury, L., Giner-Lamia, J., et al., Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms, Life, 2014, vol. 4, p. 865. https://doi.org/10.3390/life4040865

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khishamuddin, N.A., Shing, W.L., Kin, C.M., and Niu, V.B.W., Fluorometric response of photosynthetic microorganism consortium as potential bioindicator for heavy metals detection in water, Environ. Asia, 2018, vol. 11, no. 1, p. 80. https://doi.org/10.14456/ea.2018.6

    Article  Google Scholar 

  13. Lopez-Maury, L., Giner-Lamia, J., and Florencio, F.J., Redox control of copper homeostasis in cyanobacteria, Plant Signal. Behav., 2012, vol. 7, p. 1712. https://doi.org/10.4161/psb.22323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lou, W., Wolf, B.M., Blankenship, R.E., and Liu, H., Cu+ contributes to the orange carotenoid protein-related phycobilisome fluorescence quenching and photoprotection in cyanobacteria, Biochemistry, 2019, vol. 58, no. 28, p. 3109. https://doi.org/10.1021/acs.biochem.9b00409

    Article  CAS  PubMed  Google Scholar 

  15. Lytle, J.S. and Lytle, T.F., Use of plants for toxicity assessment of estuarine ecosystems, Environ. Toxicol. Chem., 2001, vol. 20, no. 1, p. 6. https://doi.org/10.1002/etc.5620200107

    Article  Google Scholar 

  16. Mariné, M.H., Clavero, E., and Roldán, M., Microscopy methods applied to research on cyanobacteria, Limnetica, 2004, vol. 23, nos. 1–2, p. 179. https://doi.org/10.23818/limn.23.16

    Article  Google Scholar 

  17. Mironov, K.S., Sinetova, M.A., Shumskaya, M.A., and Los, D.A., Universal molecular triggers of stress responses in Cyanobacterium synechocystis, Life, 2019, vol. 9, pt. 67. https://doi.org/10.3390/life9030067

  18. Mohant, N., Vass, I., and Demeter, S., Copper toxicity affects photosystem ii electron transport at the secondary quinone acceptor, QB, Plant Physiol., 1989, vol. 90, no. 1, p. 175. https://doi.org/10.1104/pp.90.1.175

    Article  Google Scholar 

  19. Nancharaiah, Y.V., Rajadurai, M., and Venugopalan, V.P., Single cell level microalgal ecotoxicity assessment by confocal microscopy and digital image analysis, Environ. Sci. Technol., 2007, vol. 41, no. 7, p. 2617. https://doi.org/10.1021/es0627390

    Article  CAS  PubMed  Google Scholar 

  20. Pan, X.L., Chen, X., Zhang, D.Y., et al., Effect of chromium (VI) on photosystem II activity and heterogeneity of Synechocystis sp. (Cyanophyta): studied with in vivo chlorophyll fluorescence tests, J. Phycol, 2009, vol. 45, p. 386. https://doi.org/10.1111/j.1529-8817.2009.00647.x

    Article  CAS  PubMed  Google Scholar 

  21. Papageorgiou, G.C., Tsimilli-Michael, M., and Stamatakis, K., The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint, Photosynth. Res., 2007, vol. 94, nos. 2–3, p. 275. https://doi.org/10.1007/s11120-007-9193-x

    Article  CAS  PubMed  Google Scholar 

  22. Pawley, J.B., Handbook of Biological Confocal Microscopy, New York: Plenum Press, 1995.

    Book  Google Scholar 

  23. Pinevich, A.V., Mamkaeva, K.A., Titova, N.N., et al., St. Petersburg Culture Collection (CALU): four decades of storage and research with microscopic algae, cyanobacteria and other microorganisms, Nova Hedwigia, 2004, vol. 79, nos. 1–2, p. 115. https://doi.org/10.1127/0029-5035/2004/0079-0115

    Article  Google Scholar 

  24. Platt, T., Gallegos, C.L., and Harrison, W.G., Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 1980, vol. 38, p. 687.

    Google Scholar 

  25. Polyak, Yu.M., Zaytseva, T.B., Petrova, V.N., and Medvedeva, N.G., Development of mass cyanobacteria species under heavy metals pollution, Hydrobiol. J., 2011, vol. 47, no. 3, p. 75. https://doi.org/10.1615/HydrobJ.v47.i3.90

    Article  Google Scholar 

  26. Poniedziałek, B., Falfushynska, H.I., and Rzymski, P., Flow cytometry as a valuable tool to study cyanobacteria: a mini-review, Limnol. Rev., 2017, vol. 17, no. 2, p. 89. https://doi.org/10.1515/limre-2017-0009

    Article  CAS  Google Scholar 

  27. Prasad, S.M., Singh, J.B., Rai, L.C., and Kumar, H.D., Metal-induced inhibition of photosynthetic electron transport chain of the cyanobacterium Nostoc muscorum, FEMS Microbiol. Lett., 1991, vol. 82, no. 1, p. 95. https://doi.org/10.1111/j.1574-6968.1991.tb04846.x

    Article  CAS  Google Scholar 

  28. Radix, P., Leonard, M., Papantoniou, C., et al., Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals, Ecotoxicol. Environ. Saf., 2000, vol. 47, no. 2, p. 186. https://doi.org/10.1006/eesa.2000.1966

    Article  CAS  PubMed  Google Scholar 

  29. Rahman, M.A., Soumya, K.K., Tripathi, A., et al., Evaluation and sensitivity of cyanobacteria, Nostoc muscorum and Synechococcus PCC 7942 for heavy metals stress-a step toward biosensor, Toxicol. Environ. Chem., 2011, vol. 93, no. 10, p. 1982. https://doi.org/10.1080/02772248.2011.606110

    Article  CAS  Google Scholar 

  30. Ralph, P.J., Smith, R.A., Macinnis-Ng, C.M.O., and Seery, C.R., Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: review, Toxicol. Environ. Chem., 2007, vol. 89, no. 4, p. 589. https://doi.org/10.1080/02772240701561593

    Article  CAS  Google Scholar 

  31. Schreiber, U., Schliwa, U., and Bilger, W., Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res., 1986, vol. 10, p. 51. https://doi.org/10.1007/BF00024185

    Article  CAS  PubMed  Google Scholar 

  32. Seder-Colomina, M., Burgos, A., Maldonado, J., et al., The effect of copper on different phototrophic microorganisms determined in vivo and at cellular level by confocal laser microscopy, Ecotoxicology, 2013, vol. 22, p. 199. https://doi.org/10.1007/s10646-012-1014-0

    Article  CAS  PubMed  Google Scholar 

  33. Voloshko, L.N. and Gavrilova, O.V., Stress responses of Synechocystis strains (Cynobacteria/Cyanoprokariota) to the toxic effects of heavy metal ions, Astrakhan. Vestn. Ekol. Obraz., 2017, vol. 1, no. 39, p. 42.

    Google Scholar 

  34. Wang, S., Chen, F., Mu, S., et al., Simultaneous analysis of photosystem responses of Microcystis aeruginosa under chromium stress, Ecotoxicol. Environ. Saf., 2013, vol. 88, p. 163. https://doi.org/10.1016/j.ecoenv.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  35. Wong, L.S., Lee, Y.H., and Surif, S., The fluorometric response of cyanobacteria to short exposure of heavy metal, Adv. Environ. Biol., 2012, vol. 6, no. 1, p. 103.

    Google Scholar 

  36. Wong, L.S., Lee, Y.H., and Surif, S., Performance of a cyanobacteria whole cell-based fluorescence biosensor for heavy metal and pesticide detection, Sensors, 2013, vol. 13, no. 5, p. 6394. https://doi.org/10.3390/s130506394

    Article  CAS  Google Scholar 

  37. Zayadan, B.K., Akmuhanova, N.R., Sadvakasova, A.K., et al., Influence of heavy metals on fluorescence activity of perspective strains of microalgae and cyanobacteria, Int. J. Biol. Chem., 2016, vol. 9, no. 1, p. 42. https://doi.org/10.26577/2218-7979-2016-9-1-42-45

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to the staff of the Resource Centre “Centre for Culture Collection of Microorganisms” of the Research Park at St. Petersburg State University for providing samples of cyanobacterial strains, as well as the staff of the Resource Centre “Centre for Molecular and Cell Technologies” of the Research Park at St. Petersburg State University for the equipment used in this study.

Funding

This study was carried out within the frames of State Task АААА-А19-119020190099-1, “Identifying New and Poorly Studied Natural and Anthropogenic Ecotoxicants in the Objects of Environment and Studying the Mechanisms of Their Transformation and Effects on Biota.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Grigoryeva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: LDA, linear discriminant analysis; OD700, optical density at wave length 700 nm; Chl a, chlorophyll a; PSI, photosystem I; PSII, photosystem II; ETR, electron transfer rate; PAR, photosynthetic active radiation; PC, phycosyanine; and Y(NPQ), quantum efficiency of nonphotochemical fluorescence quenching.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryeva, N.Y., Zaytseva, T.B. Specific Features of Technogenic Pollutants Impact on Photosynthetic Activity of Unicellular Cyanobacteria. Inland Water Biol 14, 94–103 (2021). https://doi.org/10.1134/S1995082920060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920060061

Keywords:

Navigation