Skip to main content
Log in

Estimation of biophysical characteristics for Chlamydomonas reinhardtii pigment mutants with an M-PEA-2 fluorometer

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Light green pigment mutants with a reduced chlorophyll b content were constructed in the microalga Chlamydomonas reinhardtii Dangeard. A simultaneous recording of the induction curves for prompt and delayed fluorescence and the redox state of P700 in the microsecond range with a M-PEA-2 fluorometer revealed decreases in the quantum yield of electron transport in PS2 (φE 0) and the performance index (PI ABS) and increases in the quantum efficiency of energy dissipation (φD 0) and ΔpH-dependent nonphotochemical quenching (qE and NPQ). The light-dependence curves of the fluorescence parameters confirmed a decrease in the coefficient of maximum utilization of light energy (α) for the mutants. However, the mutants showed an adequate rate of electron transport at a medium light intensity under steady-state conditions. The mutations did not directly affect the oxidation reactions of the PS1 pigment (P700) and the decrease in delayed fluorescence. Experience in using the mutants to test polluted waters of Kazakhstan confirmed that the mutants are promising for use in biomonitoring for mutagens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PS1:

photosystem I

PS2:

photosystem 2

DF:

delayed fluorescence

ETR:

relative noncyclic electron transport rate

References

  1. B. K. Zayadan and D. N. Matorin, Aquatic Ecosystem Monitoring Based on Microalgae (Alteks, Moscow, 2015) [in Russian].

    Google Scholar 

  2. N. S. Zhmur and T. L. Orlova, Procedure of Determining the Toxicity of Waters, Water Extracts of Soils, Sewage Sludge, and Wastewater from Changes in the Level of Chlorophyll Fluorescence and the Numbers of Algal cells, FR.1.39.2007.03223 (Akvaros, Moscow, 2007) [in Russian].

    Google Scholar 

  3. Yu. S. Grigor’ev and E. S. Sravinskiene, Procedure of Measuring the Relative Index of Delayed Fluorescence of Chlorella vulgaris Beijer Culture for Determining the Toxicity of Drinking Waters, Natural Fresh Waters, Wastewaters, Water Extracts from Soils, Sewage Sludge, and Industrial and Consumer Wastes (PND F T 14.1:2:4.16-09; PND F T 16.1:2.3:3.14-09, 2014) [in Russian].

    Google Scholar 

  4. D. N. Matorin, V. A. Osipov, and A. B. Rubin, Procedure of Measuring the Abundance of Phytoplankton and Changes in Its State in Natural Waters by a Fluorescent Method: Theoretical and Practical Aspects. A Manual (Altreks, Moscow, 2012) [in Russian].

    Google Scholar 

  5. D. N. Matorin and A. B. Rubin, Fluorescence of Chlorophyll from Higher Plants and Algae (IKI-RKhD, Izhevsk, 2012) [in Russian].

    Google Scholar 

  6. V. N. Gol’tsev, M. Kh. Kaladzhi, M. A. Kuzmanova, and S. I. Allakhverdiev, Variable and Delayed Fluorescence of Chlorophyll a: Theoretical Aspects and Applications in Studies on Plants (IKI-RKhD, Izhevsk, 2014) [in Russian].

    Google Scholar 

  7. B. K. Zaydan, A. K. Sadvakasova, M. M. Saleh, and M. M. Gaballah, Int. J. Curr. Microbiol. Appl. Sci. 2 (12), 64 (2013).

    Google Scholar 

  8. U. Schreiber, in Chlorophyll Fluorescence: A Signature of Photosynthesis, Ed. by G. Papageorgiou and Govindjee (Springer, Dordrecht, Netherlands, 2004), pp. 279–319.

    Book  Google Scholar 

  9. R. J. Strasser, M. Tsimilli-Michael, S. Qiang, and V. Goltsev, Biochim. Biophys. Acta 1797, 1313 (2010).

    Article  Google Scholar 

  10. A. A. Bulychev, V. A. Osipov, D. N. Matorin, and W. J. Vredenberg, J. Bioenerg. Biomembr. 45, 37 (2013).

    Article  Google Scholar 

  11. V. V. Lenbaum, A. A. Bulychev, and D. N. Matorin, Russ. J. Plant Physiol. 62 (2), 210 (2015).

    Article  Google Scholar 

  12. D. Lazar and G. Schansker, in Photosynthesis in Silico (Springer, Netherlands, 2009), pp. 85–123.

    Book  Google Scholar 

  13. A. K. Sadvakasova, N. R. Akpukhanova, B. K. Zayadan, et al., Russ. J. Plant Physiol. 63 (4) (2016).

    Google Scholar 

  14. K. V. Kvitko, I. A. Zakharov, and V. I. Khropova, Genetika No. 2, 148 (1966).

    Google Scholar 

  15. G. MijIt, B. K. Zayadan, E. Rahman, et al., Acta Genetica Sinica 30 (7), 646 (2013).

    Google Scholar 

  16. A. V. Stolbova, Yu. V. Nakonechnyi, O. N. Mirnaya, and V. V. Tugarinov, Izv. St.-Peterb. Gos. Univ. 3 (4), 111 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Matorin, F. F. Protopopov or A. K. Sadvakasova.

Additional information

Original Russian Text © D.N. Matorin, F.F. Protopopov, A.K. Sadvakasova, A.A. Alekseev, L.B. Bratkovskaja, B.K. Zayadan, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 717–725.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matorin, D.N., Protopopov, F.F., Sadvakasova, A.K. et al. Estimation of biophysical characteristics for Chlamydomonas reinhardtii pigment mutants with an M-PEA-2 fluorometer. BIOPHYSICS 61, 606–613 (2016). https://doi.org/10.1134/S0006350916040151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040151

Keywords

Navigation