Skip to main content
Log in

Relativistic effects for the superheavy reaction Og + 2Ts2 → OgTs4 (Td or D4h): dramatic relativistic effects for atomization energy of superheavy Oganesson tetratennesside OgTs4 and prediction of the existence of tetrahedral OgTs4

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Our all-electron fully relativistic Dirac–Fock (DF) and nonrelativistic (NR) Hartree–Fock SCF molecular calculations for the superheavy tetrahedral (Td) oganesson tetratennesside OgTs4 predict atomization energies (Ae) of 7.45 and −11.21 eV, respectively. Our DF and NR calculations, however for the square planar (D4h) OgTs4 predict atomization energies (Ae) of 6.34 and −8.56 eV, respectively. There are dramatic relativistic effects for the atomization energies of Td and D4h OgTs4 of ~ 18.65 eV and ~ 14.90 eV, respectively. Whereas our DF calculations predict the Td OgTs4 to be more stable than the D4h OgTs4 by ~ 1.10 eV, our NR calculations predict the D4h OgTs4 to be more stable than the Td OgTs4 by ~ 2.65 eV. Our NR calculations predict both the Td and D4h OgTs4 to be unbound by 11.21 and 8.56 eV, respectively. However, our relativistic DF calculations predict both the Td and D4h OgTs4 to be bound by 7.45 and 6.34 eV, respectively, and so the relativistic treatment is mandatory for bonding and binding in the pentatomic superheavy system with 586 electrons involving the two heaviest SHE Ts and Og.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Oganessian Yu, Dmitrieve SN (2016) Russ Chem Rev 85:901

    Article  CAS  Google Scholar 

  2. Munzenberg G (2018) EPJ Web Conf 182:02091. https://doi.org/10.1051/eppjconf/20181820291

    Article  Google Scholar 

  3. The Chemistry of Superheavy Elements, Matthias Schaedel and Dawn Shaughnessy (eds), Springer Verlag, Berlin Heidelberg, 2014

  4. Nash CS, Bursten BE (1999) Angew. Chem Int Ed 38:151

    Article  CAS  Google Scholar 

  5. Young-Kyu. Han and Yoon Sup Lee, J. Phys.Chem A ,103,1104 (1999)

  6. Gaggeler HW (2011) Radiochim Acta 99:503

    Article  CAS  Google Scholar 

  7. Oganessian Yu Ts, Phys. Rev. Lett. 104, 142502 (2010)

  8. Turler A, Pershina V (2013) Chem Rev 113:1237

    Article  CAS  Google Scholar 

  9. Karol PJ, Barber RC, Sherrill BM, Vardaci E, Yamazaki T (2015) Pure App Chem 88:155

    Article  Google Scholar 

  10. Malli GL, Oreg J (1975) J Chem Phys 63:830

    Article  CAS  Google Scholar 

  11. G.L.Malli, In Proceedings of the Robert A. Welch Foundation, 41st Conference on Chemical Research THE TRANSACTINIDE ELEMENTS, pp 197–228, Houston Texas, October 27–28, 1997.

  12. Malli GL, Styszynski J (1996) J Chem Phys 104:1012

    Article  CAS  Google Scholar 

  13. Malli GL (1998) J Chem Phys 109:4448

    Article  CAS  Google Scholar 

  14. G.L.Malli In Fundamental World of Quantum Chemistry Vol III, edited by E.J.Brandas and E.S.Kryachko. (Kluwer Academic Press, Dordrecht, 2004), pp. 323–363.

  15. Malli GL (2007) Theor Chem Acc 118:473

    Article  CAS  Google Scholar 

  16. Malli GL, Styszynski J (1994) J Chem Phys 101:10736

    Article  CAS  Google Scholar 

  17. Malli GL (2016) J Chem Phys 144:194301

    Article  Google Scholar 

  18. Malli GL (1994) J Chem Phys 101:6829

    Article  Google Scholar 

  19. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC12 (2012), written by H. J. Aa. Jensen, R. Bast, T. Saue, and L. Visscher, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, Y. S. Lee, J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, K. Ruud, P. Salek,B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (see http://www.diracprogram.org).

  20. Stanton RE, Havriliak S (1984) J Chem Phys 82:1910

    Article  Google Scholar 

  21. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  22. Roby KR (1974) Mol Phys 47:81

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-FG06-97ER 410266. This research used in part resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC03-76SF00098. We gratefully acknowledge the superb NERSC facility which is a sine qua non for our gargantuan calculations. Part of our extensive calculations was carried out using the Westgrid computing resources at Simon Fraser University, Burnaby, BC, Canada which are gratefully acknowledged. Our sincerest thanks to the anonymous reviewers for their very useful and helpful comments, especially the Reviewer who has kindly suggested to include Fig. 1 for OgTs4. We are most grateful to the Editors for their help and advice. We express our sincerest thanks especially to Prof. Tanmoy Chakrabarty, the Special Guest Editor for this issue, for his useful advice, helpful guidance, and above all for handling our numerous inquiries in a very congenial and friendly manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulzari L. Malli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles "Festschrift in honour of Prof. Ramon Carbó-Dorca"

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malli, G.L., Siegert, M., de Macedo, L.G.M. et al. Relativistic effects for the superheavy reaction Og + 2Ts2 → OgTs4 (Td or D4h): dramatic relativistic effects for atomization energy of superheavy Oganesson tetratennesside OgTs4 and prediction of the existence of tetrahedral OgTs4. Theor Chem Acc 140, 75 (2021). https://doi.org/10.1007/s00214-021-02777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02777-2

Keywords

Navigation