Skip to main content

Advertisement

Log in

Dramatic relativistic and magnetic Breit effects for the superheavy reaction Og + 3Ts2 → OgTs6: prediction of atomization energy and the existence of the superheavy octahedral oganesson hexatennesside OgTs6

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Our gargantuan ab initio all-electron fully relativistic Dirac–Fock (DF), nonrelativistic (NR) Hartree–Fock (HF) and Dirac–Fock-Breit-Gaunt (DFBG) molecular SCF calculations for the superheavy octahedral oganesson hexatenniside OgTs6 predict atomization energies (AEs) of 9.49, −5.54 and 9.37 eV, at the optimized Og-Ts bond distances of 3.35, 3.44 and 3.36 Å, respectively. There are dramatic effects of relativity for the atomization energy for OgTs6 (with seven superheavy atoms and 820 electrons) of ~15.0 eV at both the DF and DFBG levels of theory. Our calculated energies of reaction for the superheavy reaction Og + 3Ts2 → OgTs6 at the NR, DF and DFBG levels of the theory are exoergic by 8.81, 6.33 and 6.26 eV, respectively. The contribution to dispersion interactions increases the DFBG reaction energy for Og + 3Ts2 → OgTs6 by 0.94–7.20 eV. The AEs of OgTs6 to form Og + 6Ts are calculated to be −5.54 at the NR level of theory (that is, OgTs6 is unstable relative to the sum of the NR energies of its constituent atoms) and 9.49 and 9.37 eV at the DF and DFBG levels of theory, respectively. Dispersion interactions increase the AE(DFBG) by 1.30–10.67 eV. Ours are the first dispersion interaction corrected calculations for OgTs6 with seven superheavy atoms and 820 electrons. Mulliken population analysis (MPA) as implemented in the DIRAC code for our DF and NR calculations (using the dyall.cv4z basis) yields the charges Og+0.60 and Og+0.96, respectively, on the central Og atom indicating that our relativistic DF calculations predict octahedral OgTs6 to be less ionic compared to our NR HF calculations. However, due caution must be used to interpret the results of MPA, which are highly basis set dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karol PJ, Barber RC, Sherrill BM, Vardaci E, Yamazaki T (2015) Pure App Chem 88:155

    Article  Google Scholar 

  2. Conover E (2019) Science news, February 27 2019 (https://www.sciencenews.org/physics-periodic-table-future-superheavy-elements)

  3. Oganessian YT, Dmitriev SN (2016) Russ Chem Rev 85:901

    Article  CAS  Google Scholar 

  4. Kean S (2019) Science 363:466

    Article  Google Scholar 

  5. Haba H et al (2007) Eur Phys J D 45:81

    Article  CAS  Google Scholar 

  6. Van Noorden R (2016) Nature News & Comment. https://www.nature.com/news/four-chemical-elements-added-to-periodic-table-1.19112

  7. Oganessian YT (2010) Phys Rev Lett 104:142502

    Article  Google Scholar 

  8. Hofmann S (2009) Lecture Notes Phys 764:203

    Article  CAS  Google Scholar 

  9. Gaggeler HW (2009) Russ Chem Rev 78:1139

    Article  CAS  Google Scholar 

  10. Oganessian YT (2006) Pure Appl Chem 78:889

    Article  CAS  Google Scholar 

  11. Malli GL, Oreg J (1975) J Chem Phys 63:830

    Article  CAS  Google Scholar 

  12. Malli GL (1980) Chem Phys Lett 73:510

    Article  CAS  Google Scholar 

  13. Malli GL (1983) Relativistic effects in ATOMS, molecules and solids. In: Malli GL (ed) NATO ASI SERIES B Physics. Plenum Press, New York, pp 183–211

    Google Scholar 

  14. Malli GL (1994) Relativistic and electron correlation effects in molecules and solids. In: Malli GL (ed) NATO ASI SERIES B, Physics. Plenum Press, New York, pp 1–15

    Google Scholar 

  15. Malli GL (1997) In proceedings of the Robert A. Welch foundation, 41st conference on chemical research THE TRANSACTINIDE ELEMENTS, pp 197–228, Houston, Texas. pp. 27–28

  16. Malli GL, Styszynski J (1996) J Chem Phys 104:1012

    Article  CAS  Google Scholar 

  17. Malli GL (1998) J Chem Phys 109:4448

    Article  CAS  Google Scholar 

  18. Munoz-Castro A, Carey DM, Arratia-Perez R, Malli GL (2012) Polyhedron 39:113

    Article  CAS  Google Scholar 

  19. Malli GL (2004). In: Brandas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol III. Kluwer Academic Press, Dordrecht, pp 323–363

    Chapter  Google Scholar 

  20. Malli GL (2007) Theor Chem Acc 118:473

    Article  CAS  Google Scholar 

  21. Malli GL (2015) J Chem Phys 142:064311

    Article  Google Scholar 

  22. Malli GL (2016) J Chem Phys 144:194301

    Article  Google Scholar 

  23. Malli GL (2006) J Chem Phys 124:071102

    Article  Google Scholar 

  24. Visscher L, Visser O, Aerts PJC, Merenga H, Nieuwpoort WC (1994) Comput Phys Commun 81:120

    Article  CAS  Google Scholar 

  25. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC12 (2012), written by Aa. Jensen HJ, Bast R, Saue T, and Visscher L, with contributions from Bakken V, Dyall KG, Dubillard S, Ekstroem U, Eliav E, Enevoldsen T, Fleig T, Fossgaard O, Gomes ASP, Helgaker T, Laerdahl JK, Lee YS, Henriksson J, Ilias M, Ch. R. Jacob, Knecht S, Komorovsky S, Kullie O, Larsen CV, Nataraj HS, Norman P, Olejniczak G, Olsen J, Park YC, Pedersen JK, Pernpointner M, Ruud K, Salek P, Schimmelpfennig B, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Villaume S, Visser O, Winther T, and Yamamoto S (see http://www.diracprogram.org)

  26. Stanton RE, Havriliak S (1984) J Chem Phys 82:1910

    Article  Google Scholar 

  27. Breit G (1929) Phys Rev 34:553

    Article  CAS  Google Scholar 

  28. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  29. Roby KR (1974) Mol Phys 47:81

    Article  Google Scholar 

  30. Grimme S, Antony G, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  31. Becke AD, Johnson ER (2007) J Chem Phys 127:154108

    Article  Google Scholar 

  32. Slater JC, Kirkwood JG (1931) Phys Rev 37:682

    Article  CAS  Google Scholar 

  33. Stone A (2013) The theory of intermolecular forces. Oxford University Press, Oxford, p 68

    Book  Google Scholar 

  34. Schwerdtfeger P, Nagle JK (2019) Mol Phys 117:1200

    Article  CAS  Google Scholar 

  35. Tkatchenko A, Fedorov DV https://arxiv.org/pdf/2007.02992.pdf.

  36. Rahm M, Hoffmann R, Ashcroft NW (2016) Chem Euro J 22:14625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-FG06-97ER 410266. This research has used in part resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No.DE-AC03-76SF00098. We gratefully acknowledge the superb NERSC facility which is a sine qua non for our gargantuan calculations. Part of our extensive calculations was carried out using the Westgrid computing resources at Simon Fraser University, Burnaby, BC, Canada which are gratefully acknowledged. Our sincerest thanks to the anonymous reviewers for their very useful and helpful comments, especially the Reviewer who suggested including the dispersion interaction corrections for OgTs6. GAD is grateful to Professor Erin R. Johnson for helpful discussions. We are most grateful to the Editors for their help and advice. We express our sincerest thanks to Prof. Tanmoy Chakrabarty, the Special Guest Editor for this issue, for his useful advice, helpful guidance, and above all for handling our numerous inquiries in a very congenial and friendly manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulzari L. Malli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles "Festschrift in honour of Prof. Ramon Carbó-Dorca".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malli, G.L., DiLabio, G.A., Loveland, W. et al. Dramatic relativistic and magnetic Breit effects for the superheavy reaction Og + 3Ts2 → OgTs6: prediction of atomization energy and the existence of the superheavy octahedral oganesson hexatennesside OgTs6. Theor Chem Acc 140, 137 (2021). https://doi.org/10.1007/s00214-021-02832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02832-y

Keywords

Navigation