Skip to main content
Log in

A B3LYP investigation of the conformational and environmental sensitivity of carbon–deuterium frequencies of aryl-perdeuterated phenylalanine and tryptophan

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Carbon–deuterium labeled amino acids can serve as sensitive probes for biophysical characterization. Although multiple research groups have used infrared spectroscopy in conjunction with alkyl backbone or side-chain deuterated amino acids for the biophysical characterization of conformational and/or environmental changes, it was not entirely clear to the authors that perdeuterated aryl rings would demonstrate a similar sensitivity toward conformational or environmental changes. In an effort to evaluate the sensitivity of aryl carbon–deuterium (C–D) IR frequencies, a B3LYP investigation of the sensitivity of aryl C–D frequencies toward conformational and environmental changes was conducted for phenylalanine (Phe) and tryptophan (Trp). To compensate for the low molar absorptivity of C–D frequencies, perdeuterated aryl rings were investigated, which are commercially available and can be readily compared to experimental data. B3LYP results suggest that aryl-deuterated Phe and Trp will exhibit moderate sensitivities toward conformational and environmental changes with frequency shifts upward of 13 and 26 cm−1 for Phe and Trp, respectively. B3LYP predicts that conformational sensitivity arises from dipole changes and not orbital alignment changes. In an effort to mimic what might be observed experimentally, simulated IR spectra were created and show absorption band changes with conformational and environmental changes, which indicate that IR characterization of perdeuterated aryl rings in amino acids could serve as a biophysical tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Romesberg FE (2003) Chembiochem 4:563–571

    Article  CAS  Google Scholar 

  2. Decatur SM (2006) Acc Chem Res 39:169–175

    Article  CAS  Google Scholar 

  3. Arkin IT (2006) Curr Opin Chem Biol 10:394–401

    Article  CAS  Google Scholar 

  4. Susuki S, Oshima T, Tamiya N, Fukushima K, Shimanouchi T, Mizushima S (1959) Spectrochim Acta 11:969–976

    Article  Google Scholar 

  5. Susuki S, Shimanouchi T (1963) Spectrochim Acta 19:1195–1208

    Article  Google Scholar 

  6. Susuki S, Iwashita Y, Shimanouchi T (1966) Biopolymers 4:337–350

    Article  Google Scholar 

  7. Torres J, Kukol A, Arkin IT (2000) Biophys J 79:3139–3143

    Article  CAS  Google Scholar 

  8. Eyal A, Arkin IT (2004) J Am Chem Soc 126:5362–5363

    Article  Google Scholar 

  9. Mirkin NG, Krimm S (2004) J Phys Chem A 108:10923–10924

    Article  CAS  Google Scholar 

  10. Kinnaman CS, Cremeens ME, Romesberg FE, Corcelli SA (2006) J Am Chem Soc 128:13334–13335

    Article  CAS  Google Scholar 

  11. Mirkin NG, Krimm S (2007) J Phys Chem A 111:5300–5303

    Article  CAS  Google Scholar 

  12. Mirkin NG, Krimm S (2008) J Phys Chem B 112:15267–15268

    Article  CAS  Google Scholar 

  13. Cremeens ME, Zimmermann J, Yu W, Dawson PE, Romesberg FE (2009) J Am Chem Soc 131:5726–5727

    Article  CAS  Google Scholar 

  14. Miller CS, Ploetz EA, Cremeens ME, Corcelli SA (2009) J Chem Phys 130:125103

    Article  CAS  Google Scholar 

  15. Chin JK, Jimenez R, Romesberg FE (2001) J Am Chem Soc 123:2426–2427

    Article  CAS  Google Scholar 

  16. Chin JK, Jimenez R, Romesberg FE (2002) J Am Chem Soc 124:1846–1847

    Article  CAS  Google Scholar 

  17. Torres J, Arkin IT (2002) Biophys J 82:1068–1075

    Article  CAS  Google Scholar 

  18. Sagle LB, Zimmermann J, Dawson PE, Romesberg FE (2004) J Am Chem Soc 126:3384–3385

    Article  CAS  Google Scholar 

  19. Jarmelo S, Lapinski L, Nowak MJ, Carey PR, Fausto R (2005) J Phys Chem A 109:5689–5707

    Article  CAS  Google Scholar 

  20. Cremeens ME, Fujisaki H, Zhang Y, Zimmermann J, Sagle LB, Matsuda S, Dawson PE, Straub JE, Romesberg FE (2006) J Am Chem Soc 128:6028–6029

    Article  CAS  Google Scholar 

  21. Sagle LB, Zimmermann J, Matsuda S, Dawson PE, Romesberg FE (2006) J Am Chem Soc 128:7909–7915

    Article  CAS  Google Scholar 

  22. Sagle LB, Zimmermann J, Dawson PE, Romesberg FE (2006) J Am Chem Soc 128:14232–14233

    Article  CAS  Google Scholar 

  23. Weinkam P, Zimmermann J, Sagle LB, Matsuda S, Dawson PE, Wolynes PG, Romesberg FE (2008) Biochemistry 47:13470–13480

    Article  CAS  Google Scholar 

  24. Thielges MC, Case DA, Romesberg FE (2008) J Am Chem Soc 130:6597–6603

    Article  CAS  Google Scholar 

  25. Thielges MC, Zimmermann J, Dawson PE, Romesberg FE (2009) J Mol Biol 24:159–167

    Article  Google Scholar 

  26. Naraharisetty SRG, Kasyanenko VM, Zimmermann J, Thielges MC, Romesberg FE, Rubtsov IV (2009) J Phys Chem B 113:4940–4946

    Article  CAS  Google Scholar 

  27. Zimmermann J, Gundogdu K, Cremeens ME, Bandaria JN, Hwang GT, Thielges MC, Cheatum CM, Romesberg FE (2009) J Phys Chem B 113:7991–7994

    Article  CAS  Google Scholar 

  28. Zimmermann J, Thielges MC, Yu W, Dawson PE, Romesberg FE (2011) J Phys Chem Lett 2:412–416

    Article  CAS  Google Scholar 

  29. Miller CS, Corcelli SA (2009) J Phys Chem B 113:8218–8221

    Article  CAS  Google Scholar 

  30. Miller CS, Corcelli SA (2010) J Phys Chem B 114:8565–8573

    Article  CAS  Google Scholar 

  31. Tokuhisa S, Yoshikawa H, Ichihara S, Baba S (1977) Radioisotopes 26(9):630–635

    CAS  Google Scholar 

  32. Bellamy LJ (1980) The infrared spectra of complex molecules volume two, 2nd edn. Chapman and Hall, London

    Google Scholar 

  33. Jarmelo S, Maiti N, Anderson V, Carey PR, Fausto R (2005) J Phys Chem A 109(10):2069–2077

    Article  CAS  Google Scholar 

  34. Gantz I, Fong TM (2003) Am J Physiol Endocrinol Metab 284:E468–E474

    CAS  Google Scholar 

  35. Brzoska T, Luger TA, Maaser C, Abels C, Bohm M (2008) Endocr Rev 29(5):581–602

    Article  CAS  Google Scholar 

  36. Halls MD, Schlegel HB (1998) J Chem Phys 109:10587–10593

    Article  CAS  Google Scholar 

  37. Galabov B, Yamaguchi Y, Remington RB, Schaefer HF III (2002) J Phys Chem A 106:819–832

    Article  CAS  Google Scholar 

  38. Rappe AK, Bernstein ER (2000) J Phys Chem A 104:6117–6128

    Article  CAS  Google Scholar 

  39. Cybulski SM, Severson CE (2005) J Chem Phys 122:014117

    Article  Google Scholar 

  40. Jakubikova E, Rappe AK, Bernstein ER (2006) J Phys Chem A 110:9529–9541

    Article  CAS  Google Scholar 

  41. Baranowska A, Fernandez B, Sadlej AJ (2011) Theor Chem Acct 128:555–561

    Article  CAS  Google Scholar 

  42. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Theor Chem Acc 119:191–210

    Article  CAS  Google Scholar 

  43. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  44. Kaczor A, Reva ID, Proniewicz LM, Fausto R (2006) J Phys Chem A 110:2360–2370

    Article  CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  46. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  47. Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  48. Lee C, Yang W, Parr RG (1998) Phys. Rev. B 37:785–789

    Google Scholar 

  49. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  50. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  51. Li H, Jensen JH (2004) J Comput Chem 25:1449–1462

    Article  CAS  Google Scholar 

  52. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  53. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  54. Cammi R, Tomasi J (1995) J Comput Chem 16:1449–1458

    Article  CAS  Google Scholar 

  55. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  56. Komornicki A, McIver JW (1979) J Chem Phys 70:2014–2016

    Article  CAS  Google Scholar 

  57. Bacskay GB, Saebo S, Taylor PR (1984) Chem Phys 90:215–224

    Article  CAS  Google Scholar 

  58. Royer CA (2006) Chem Rev 106:1769–1784

    Article  CAS  Google Scholar 

  59. Groff D, Thielges MC, Celliti S, Schultz PG, Romesberg FE (2009) Angew Chem Int Ed 48:3478–3481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Matt Bergman, Dr. Steven Corcelli, Dr. Ruel Desamero, Brett Hendricks, Jason Schnagl, and the Gonzaga University Department of Chemistry and Biochemistry. Computer time was provided by the Intel Corp. Computer Science Laboratory at Gonzaga University. This research was supported in part by a grant to Gonzaga University from the Howard Hughes Medical Institute through the Undergraduate Science Education Program, the Gonzaga Science Research Program, Gonzaga University Start-up Funds, and Donor Funds administered by Gonzaga’s Office of the Dean for the School of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Cremeens.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickert, A.S., Durgan, A.C., Patton, D.A. et al. A B3LYP investigation of the conformational and environmental sensitivity of carbon–deuterium frequencies of aryl-perdeuterated phenylalanine and tryptophan. Theor Chem Acc 130, 883–889 (2011). https://doi.org/10.1007/s00214-011-1050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1050-5

Keywords

Navigation