Skip to main content
Log in

On the short and long phosphorescence lifetimes of aromatic carbonyls

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work applies theoretical and computational methods to investigate the relationship between phosphorescence lifetime and the electronic character of the lowest triplet state of aromatic carbonyls. A formal analysis of the spin-perturbed wave functions shows that phosphorescence is due to a direct spin–orbit coupling mechanism modulated by permanent dipoles when the T1 minimum is 3*. If the minimum is a totally symmetric 3ππ*, phosphorescence is due to an indirect spin–orbit coupling mechanism involving transition dipole moments with other excited states. The magnitude difference between permanent and transition dipoles leads to a much faster 3* phosphoresce than 3ππ*. These predictions were verified with phosphorescence lifetime simulations of benzaldehyde and its three derivatives in the gas phase employing a vertical approximation and the nuclear ensemble approaches. Both predict 3* emission within a few tens of milliseconds. While the vertical approach indicates a 3ππ* emission within a few seconds, vibronic corrections bring this value down to about 200 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in figshare repository, Ref. [62]. They include the Cartesian coordinate of stationary structures and the raw data of the NEA simulations. The NEA phosphorescence method was implemented in Newton-X and is publicly available at www.newtonx.org. PySOC is freely available at gitlab.com/light-and-molecules/pysoc.

References

  1. Harrigan ET, Hirota N (1976) Microwave-induced delayed phosphorescence studies of the total and radiationless decay processes of 3ππ* aromatic carbonyls. Mol Phys 31:663–680. https://doi.org/10.1080/00268977600100521

    Article  CAS  Google Scholar 

  2. Lower SK, El-Sayed MA (1966) The triplet state and molecular electronic processes in organic molecules. Chem Rev 66:199–241. https://doi.org/10.1021/cr60240a004

    Article  CAS  Google Scholar 

  3. Harrigan ET, Hirota N (1976) Phosphorescence microwave double resonance and spectroscopic studies of the radiative mechanisms of benzaldehyde type 3ππ* aromatic carbonyls. Mol Phys 31:681–697. https://doi.org/10.1080/00268977600100531

    Article  CAS  Google Scholar 

  4. Olmsted J, El-Sayed MA (1971) Phosphorescence spectrum and mechanisms of benzaldehyde in methyl-cyclohexane at 4.2°K. J Mol Spectrosc 40:71–83. https://doi.org/10.1016/0022-2852(71)90009-9

    Article  CAS  Google Scholar 

  5. Zwarich RJ, Goodman L (1970) Out-of-plane vibrations in T(*) → S0 of benzaldehyde. Chem Phys Lett 7:609–611. https://doi.org/10.1016/0009-2614(70)87018-X

    Article  CAS  Google Scholar 

  6. Zhao W, He Z, Lam Jacky WY, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang Ben Z (2016) Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1:592–602. https://doi.org/10.1016/j.chempr.2016.08.010

    Article  CAS  Google Scholar 

  7. McGlynn SP, Azumi T, Kinoshita M (1969) Molecular spectroscopy of the triplet state. Prentice-Hall, New Jersey

    Google Scholar 

  8. Marian CM (2001) Reviews in computational chemistry. John Wiley & Sons Inc. https://doi.org/10.1002/0471224413.ch3

    Book  Google Scholar 

  9. Clementi E, Kasha M (1958) Spin-orbital interaction in N-heterocyclic molecules general results in a cylindrical potential approximation. J Mol Spectrosc 2:297–307. https://doi.org/10.1016/0022-2852(58)90082-1

    Article  CAS  Google Scholar 

  10. Sidman JW (1958) Spin-orbit coupling in pyrazine. J Mol Spectrosc 2:333–341. https://doi.org/10.1016/0022-2852(58)90085-7

    Article  CAS  Google Scholar 

  11. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books

    Google Scholar 

  12. Cheng TH, Hirota N (1974) PMDR studies of the magnetic and dynamic properties of the lowest excited triplet states of aromatic carbonyl molecules: acetophenone, benzaldehyde and their derivatives. Mol Phys 27:281–307. https://doi.org/10.1080/00268977400100291

    Article  Google Scholar 

  13. Hilborn RC (1982) Einstein coefficients, cross-sections, f values, dipole-moments, and all that. Am J Phys 50:982–986. https://doi.org/10.1119/1.12937

    Article  CAS  Google Scholar 

  14. Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537. https://doi.org/10.1021/acs.chemrev.7b00060

    Article  CAS  PubMed  Google Scholar 

  15. Peng Q, Niu Y, Shi Q, Gao X, Shuai Z (2013) Correlation function formalism for triplet excited state decay: combined spin-orbit and nonadiabatic couplings. J Chem Theory Comput 9:1132–1143. https://doi.org/10.1021/ct300798t

    Article  CAS  PubMed  Google Scholar 

  16. Minaev B, Baryshnikov G, Agren H (2014) Principles of phosphorescent organic light emitting devices. PCCP 16:1719–1758. https://doi.org/10.1039/C3CP53806K

    Article  CAS  PubMed  Google Scholar 

  17. Jansson E, Norman P, Minaev B, Ågren H (2006) Evaluation of low-scaling methods for calculation of phosphorescence parameters. J Chem Phys 124:114106. https://doi.org/10.1063/1.2179432

    Article  CAS  PubMed  Google Scholar 

  18. Crespo-Otero R, Barbatti M (2012) Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to Benzene, Furan and 2-Phenylfuran. Theor Chem Acc 131:1237. https://doi.org/10.1007/s00214-012-1237-4

    Article  CAS  Google Scholar 

  19. Rocha AB, Bielschowsky CE (2000) Vibronic coupling for H2CO and CO2. Chem Phys 253:51–57. https://doi.org/10.1016/S0301-0104(99)00379-1

    Article  CAS  Google Scholar 

  20. Santoro F, Jacquemin D (2016) Going beyond the vertical approximation with time-dependent density functional theory. WIREs Comp Mol Sci 6:460–486. https://doi.org/10.1002/wcms.1260

    Article  CAS  Google Scholar 

  21. de Souza B, Neese F, Izsák R (2018) On the theoretical prediction of fluorescence rates from first principles using the path integral approach. J Chem Phys 148:034104. https://doi.org/10.1063/1.5010895

    Article  CAS  PubMed  Google Scholar 

  22. Torres AD, de Moura CEV, Oliveira RR, Rocha AB (2022) Comparison among several vibronic coupling methods. J Mol Model 28:253. https://doi.org/10.1007/s00894-022-05230-8

    Article  CAS  PubMed  Google Scholar 

  23. Arbelo-González W, Crespo-Otero R, Barbatti M (2016) Steady and time-resolved photoelectron spectra based on nuclear ensembles. J Chem Theory Comput 12:5037–5049. https://doi.org/10.1021/acs.jctc.6b00704

    Article  CAS  PubMed  Google Scholar 

  24. Barbatti M, Bondanza M, Crespo-Otero R, Demoulin B, Dral PO, Granucci G, Kossoski F, Lischka H, Mennucci B, Mukherjee S, Pederzoli M, Persico M, Pinheiro M Jr, Pittner J, Plasser F, Sangiogo Gil E, Stojanovic L (2022) Newton-X platform: new software developments for surface hopping and nuclear ensembles. J Chem Theory Comput 18:6851–6865. https://doi.org/10.1021/acs.jctc.2c00804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petit AS, Subotnik JE (2014) How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: a simple generalization of ground-state Kubo theory. J Chem Phys 141:014107. https://doi.org/10.1063/1.4884945

    Article  CAS  PubMed  Google Scholar 

  26. Xue B-X, Barbatti M, Dral PO (2020) Machine learning for absorption cross sections. J Phys Chem A 124:7199–7210. https://doi.org/10.1021/acs.jpca.0c05310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biron M, Longin P (1985) Triplet dynamics of gas-phase benzaldehyde after excitation of the forbidden T1(n, π*) ← S0 transition. Chem Phys Lett 116:250–253. https://doi.org/10.1016/0009-2614(85)80163-9

    Article  CAS  Google Scholar 

  28. Inoue A, Ebara N (1984) Triplet dynamics of benzaldehyde as studied by electron impact excitation. Chem Phys Lett 109:27–30. https://doi.org/10.1016/0009-2614(84)85394-4

    Article  CAS  Google Scholar 

  29. Brühlmann U, Nonella M, Russegger P, Huber JR (1983) The triplet state decay (T1(*) → S0) of benzaldehydes in the dilute gas phase. Chem Phys 81:439–447. https://doi.org/10.1016/0301-0104(83)85335-X

    Article  Google Scholar 

  30. Hirata Y, Lim EC (1980) Nonradiative electronic relaxation of gas phase aromatic carbonyl compounds: Benzaldehyde. J Chem Phys 72:5505–5510. https://doi.org/10.1063/1.438967

    Article  CAS  Google Scholar 

  31. Itoh T, Takemura T, Baba H (1976) Excitation-energy dependence of phosphorescence quantum yield of benzaldehyde vapour at low pressure. Chem Phys Lett 40:481–483. https://doi.org/10.1016/0009-2614(76)85123-8

    Article  CAS  Google Scholar 

  32. Itoh T (1988) The evidence showing that the intersystem crossing yield of benzaldehyde vapour is unity. Chem Phys Lett 151:166–168. https://doi.org/10.1016/0009-2614(88)80089-7

    Article  CAS  Google Scholar 

  33. Koyanagi M, Goodman L (1971) Triplet state of Benzaldehyde. J Chem Phys 55:2959–2976. https://doi.org/10.1063/1.1676523

    Article  CAS  Google Scholar 

  34. Bagnich SA (1998) Long-lived luminescence of complex molecules. J Appl Spectrosc 65:687–700. https://doi.org/10.1007/BF02679842

    Article  Google Scholar 

  35. Hossain M, Hanson DM (1978) Relative magnitudes of singlet and triplet state dipole moments: the lowest * excited states of p-methylbenzaldehyde and p-chlorobenzaldehyde. Chem Phys 30:155–161. https://doi.org/10.1016/0301-0104(78)85115-5

    Article  CAS  Google Scholar 

  36. Feenstra JS, Park ST, Zewail AH (2005) Excited state molecular structures and reactions directly determined by ultrafast electron diffraction. J Chem Phys 123:221104. https://doi.org/10.1063/1.2140700

    Article  CAS  PubMed  Google Scholar 

  37. Ohmori N, Suzuki T, Ito M (1988) Why does intersystem crossing occur in isolated molecules of benzaldehyde, acetophenone, and benzophenone? J Phys Chem 92:1086–1093. https://doi.org/10.1021/j100316a019

    Article  CAS  Google Scholar 

  38. Cui G, Lu Y, Thiel W (2012) Electronic excitation energies, three-state intersections, and photodissociation mechanisms of benzaldehyde and acetophenone. Chem Phys Lett 537:21–26. https://doi.org/10.1016/j.cplett.2012.04.008

    Article  CAS  Google Scholar 

  39. Zhao H, Zhang Y, Zhao Q, Li Y, Huang Z (2022) A theoretical study of H-abstractions of benzaldehyde by H, O3(P), 3O2, OH, HO2, and CH3 radicals: ab initio rate coefficients and their uncertainty quantification. J Phys Chem A 126:7523–7533. https://doi.org/10.1021/acs.jpca.2c02384

    Article  CAS  PubMed  Google Scholar 

  40. Ou Q, Subotnik JE (2013) Electronic relaxation in benzaldehyde evaluated via TD-DFT and localized diabatization: intersystem crossings, conical intersections, and phosphorescence. J Phys Chem C 117:19839–19849. https://doi.org/10.1021/jp405574q

    Article  CAS  Google Scholar 

  41. Yang N-C, McClure DS, Murov S, Houser JJ, Dusenbery R (1967) Photoreduction of acetophenone and substituted acetophenones. J Am Chem Soc 89:5466–5468. https://doi.org/10.1021/ja00997a037

    Article  CAS  Google Scholar 

  42. Berger M, Goldblatt IL, Steel C (1973) Photochemistry of benzaldehyde. J Am Chem Soc 95:1717–1725. https://doi.org/10.1021/ja00787a004

    Article  CAS  Google Scholar 

  43. Itoh T (1989) Photophysics and photochemistry of anisaldehyde vapor. J Photochem Photobiol A 50:171–181. https://doi.org/10.1016/1010-6030(89)85013-0

    Article  CAS  Google Scholar 

  44. Itoh T (2003) The lowest excited triplet (T1) energies of p-methoxybenzaldehyde and p-cyanobenzaldehyde vapors estimated from the temperature dependence of the T2(n, π*) phosphorescence and the S1(n, π*) fluorescence spectra. Spectrochim Acta A Mol Biomol Spectrosc 59:61–68. https://doi.org/10.1016/S1386-1425(02)00145-2

    Article  PubMed  Google Scholar 

  45. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  46. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular-orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  47. Casida M (1995) In: Chong D (ed) Recent advances in density functional methods, Part I. World Scientific, Singapore https://doi.org/10.1142/2914

  48. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  49. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106–084115. https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  50. Sears JS, Koerzdoerfer T, Zhang C-R, Brédas J-L (2011) Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals. J Chem Phys 135:151103. https://doi.org/10.1063/1.3656734

    Article  CAS  PubMed  Google Scholar 

  51. Gao X, Bai S, Fazzi D, Niehaus T, Barbatti M, Thiel W (2017) Evaluation of spin-orbit couplings with linear-response time-dependent density functional methods. J Chem Theory Comput 13:515–524. https://doi.org/10.1021/acs.jctc.6b00915

    Article  CAS  PubMed  Google Scholar 

  52. Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comp Mol Sci 2:187–203. https://doi.org/10.1002/wcms.83

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. C.01, Wallingford, CT https://gaussian.com

  54. Chiodo SG, Leopoldini M (2014) MolSOC: a spin–orbit coupling code. Comput Phys Commun 185:676–683. https://doi.org/10.1016/j.cpc.2013.10.014

    Article  CAS  Google Scholar 

  55. Molina V, Merchán M (2001) Theoretical analysis of the electronic spectra of benzaldehyde. J Phys Chem A 105:3745–3751. https://doi.org/10.1021/jp004041t

    Article  CAS  Google Scholar 

  56. El-Sayed MA (1963) Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838. https://doi.org/10.1063/1.1733610

    Article  CAS  Google Scholar 

  57. Takemura T, Baba H (1969) Effects of substitution on the phosphorescence process of aromatic carbonyl compounds. Bull Chem Soc Jpn 42:2756–2762. https://doi.org/10.1246/bcsj.42.2756

    Article  CAS  Google Scholar 

  58. Franco de Carvalho F, Curchod BFE, Penfold TJ, Tavernelli I (2014) Derivation of spin-orbit couplings in collinear linear-response TDDFT: a rigorous formulation. J Chem Phys 140:144103. https://doi.org/10.1063/1.4870010

    Article  CAS  PubMed  Google Scholar 

  59. Huix-Rotllant M, Ferré N, Barbatti M (2020) In: González L, Lindh R (eds) Quantum chemistry and dynamics of excited states: methods and applications. John Wiley & Sons https://doi.org/10.1002/9781119417774.ch2

  60. Lin Z-P, Aue WA (2000) Gas-phase luminescence of aromatic carbonyl compounds in excited nitrogen at atmospheric pressure. Can J Chem 78:95–117. https://doi.org/10.1139/v99-203

    Article  CAS  Google Scholar 

  61. Shimada R, Goodman L (1965) Polarization of aromatic carbonyl spectra. J Chem Phys 43:2027–2041. https://doi.org/10.1063/1.1697070

    Article  CAS  Google Scholar 

  62. Mukherjee S, Kar M, Bhati M, Gao X, Barbatti M (2023). figshare. https://doi.org/10.6084/m9.figshare.22277548.v2

Download references

Acknowledgements

SM, MK, and MB thank the support of the funding provided by European Research Council (ERC) Advanced grant SubNano (Grant agreement 832237). XG thanks the National Natural Science Foundation of China, grant No. 22273122.

Author information

Authors and Affiliations

Authors

Contributions

MB contributed to conceptualization, funding acquisition, project administration, and supervision; SM and MB carried out formal analysis, visualization, and writing—original draft; SM, MK, and MB performed investigation; XG and MB provided methodology; SM and MBh provided software; SM, MBh, XG, and MB performed writing—review and editing.

Corresponding authors

Correspondence to Saikat Mukherjee or Mario Barbatti.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 768 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Kar, M., Bhati, M. et al. On the short and long phosphorescence lifetimes of aromatic carbonyls. Theor Chem Acc 142, 85 (2023). https://doi.org/10.1007/s00214-023-03020-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03020-w

Keywords

Navigation