Skip to main content
Log in

Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work we have utilized recent density functional theory Born-Oppenheimer molecular dynamics simulations to determine the first principles locations of the water molecules in the first solvation shell which are responsible for stabilizing the zwitterionic structure of L-alanine. Previous works have used chemical intuition or classical molecular dynamics simulations to position the water molecules. In addition, a complete shell of water molecules was not previously used, only the water molecules which were thought to be strongly interacting (H-bonded) with the zwitterionic species. In a previous work by Tajkhorshid et al. (J Phys Chem B 102:5899) the L-alanine zwitterion was stabilized by 4 water molecules, and a subsequent work by Frimand et al. (Chem Phys 255:165) the number was increased to 9 water molecules. Here we found that 20 water molecules are necessary to fully encapsulate the zwitterionic species when the molecule is embedded within a droplet of water, while 11 water molecules are necessary to encapsulate the polar region with the methyl group exposed to the surface, where it migrates during the MD simulation. Here we present our vibrational absorption, vibrational circular dichroism and Raman and Raman optical activity simulations, which we compare to the previous simulations and experimental results. In addition, we report new VA, VCD, Raman and ROA measurements for L-alanine in aqueous solution with the latest commercially available FTIR VA/VCD instrument (Biotools, Jupiter, FL, USA) and Raman/ROA instrument (Biotools). The signal to noise of the spectra of L-alanine measured with these new instruments is significantly better than the previously reported spectra. Finally we reinvestigate the causes for the stability of the Pπ structure of the alanine dipeptide, also called N-acetyl-L-alanine N′-methylamide, in aqueous solution. Previously we utilized the B3LYP/6-31G* + Onsager continuum level of theory to investigate the stability of the NALANMA4WC Han et al. (J Phys Chem B 102:2587) Here we use the B3PW91 and B3LYP hybrid exchange correlation functionals, the aug-cc-pVDZ basis set and the PCM and CPCM (COSMO) continuum solvent models, in addition to the Onsager and no continuum solvent model. Here by the comparison of the VA, VCD, Raman and ROA spectra we can confirm the stability of the NALANMA4WC due to the strong hydrogen bonding between the four water molecules and the peptide polar groups. Hence we advocate the use of explicit water molecules and continuum solvent treatment for all future spectral simulations of amino acids, peptides and proteins in aqueous solution, as even the structure (conformer) present cannot always be found without this level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tajkhorshid E, Jalkanen KJ and Suhai S (1998). J Phys Chem B 102: 5899

    CAS  Google Scholar 

  2. Frimand K, Jalkanen KJ, Bohr HG and Suhai S (2000). Chem Phys 255: 165

    CAS  Google Scholar 

  3. Han W-G, Jalkanen KJ, Elstner M and Suhai S (1998). J Phys Chem B 102: 2587

    CAS  Google Scholar 

  4. Perkins SJ (2001). Biophys Chem 93: 129

    CAS  Google Scholar 

  5. Gerstein M and Chothia C (1996). Proc Natl Acad Sci USA 93: 10167

    CAS  Google Scholar 

  6. Degtyarenko IM, Jalkanen KJ, Gurtovenko AA, Nieminen RM (2007) J Comput Theor Nanosci (accepted in press)

  7. Blanch EW, Hecht L and Barron LD (1999). Protein Sci 8: 1362

    CAS  Google Scholar 

  8. Roberts G-ML (1990) Ph.D. thesis, The City University of New York (Hunter College), New York

  9. Roberts G-ML, Diem M (1987) In: Schmid ED, Schneider FW, Siebert F (eds) Spectroscopy of biological molecules new advances. Proceedings of the Second European conference of the spectroscopy of biological molecules, Freiburg, West Germany, 1988. Wiley, New York pp 77–79

  10. Madison V and Kopple KD (1980). J Am Chem Soc 102: 4855

    CAS  Google Scholar 

  11. Maxfield FR, Leach SJ, Stimson ER, Powers SP and Scheraga HA (1979). Biopolymers 18: 2507

    CAS  Google Scholar 

  12. Grenie Y, Avignon M and Garribou-Lagrange C (1975). J Mol Struct 24: 293

    CAS  Google Scholar 

  13. Mattice WL (1974). Biopolymers 13: 169

    CAS  Google Scholar 

  14. Avignon M, Garrigou-Lagrange C and Bothorel P (1973). Biopolymers 12: 1651

    CAS  Google Scholar 

  15. Cann JR (1972). Biochemistry 11: 2654

    CAS  Google Scholar 

  16. Koyama Y, Shimanouchi T, Sato M and Tatsuno T (1971). Biopolymers 10: 1059

    CAS  Google Scholar 

  17. Avignon M and Houng PV (1970). Biopolymers 9: 427

    CAS  Google Scholar 

  18. Avignon M, Huong PV, Lascombe J, Marraud M and Neel J (1969). Biopolymers 8: 69

    CAS  Google Scholar 

  19. Mizushima S-I, Shimanouchi T, Tsuboi M, Sugita T, Kurosaki K, Mataga N and Souda R (1952). J Am Chem Soc 74: 4639

    CAS  Google Scholar 

  20. Blanco S, Lesarri A, Lopez JC and Alonso JL (2004). J Am Chem Soc 126: 11675

    CAS  Google Scholar 

  21. Jalkanen KJ, Bohr HG, Suhai S (1997) In: Suhai S (ed) Proceedings of the international symposium on theoretical and computational genome research. Plenum Press, New York pp 255–277

  22. Jalkanen KJ and Suhai S (1996). Chem Phys 208: 81

    CAS  Google Scholar 

  23. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS and Jalkanen KJ (1996). J Phys Chem 100: 2025

    CAS  Google Scholar 

  24. Baker MV, Kraatz H-B and Quail JW (2001). New J Chem 25: 427

    CAS  Google Scholar 

  25. Bohr HG, Jalkanen KJ, Frimand K, Elstner M and Suhai S (1999). Chem Phys 246: 13

    CAS  Google Scholar 

  26. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E and Suhai S (2001). Chem Phys 265: 125

    CAS  Google Scholar 

  27. Knapp-Mohammady M, Jalkanen KJ, Nardi F, Wade RC and Suhai S (1999). Chem Phys 240: 63

    CAS  Google Scholar 

  28. Jalkanen KJ, Nieminen RM, Knapp-Mohammady M and Suhai S (2003). Int J Quantum Chem 92: 239

    CAS  Google Scholar 

  29. Jalkanen KJ (2003). J Phys Condens Matter 15: S18230

    Google Scholar 

  30. Jalkanen KJ, Elstner M and Suhai S (2004). J Mol Struct (Theochem) 675: 61

    CAS  Google Scholar 

  31. Deplazes E, van Bronswijk B, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-007-0276-8

  32. Bohr H, Frimand K, Jalkanen KJ, Nieminen RM and Suhai S (2001). Phys Rev E 64: 021905

    CAS  Google Scholar 

  33. Bohr H, Røgen P and Jalkanen KJ (2001). Comput Chem 26: 65

    CAS  Google Scholar 

  34. Barron LD, Zhu F and Hecht L (2006). Vib Spectrosc 42: 15

    CAS  Google Scholar 

  35. Barron LD, Hecht L, Blanch EW and Bell AF (2000). Prog Biophys Mol Biol 73: 1

    CAS  Google Scholar 

  36. Ramnarayan K, Bohr HG, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-007-0285-7

  37. Venyaminov SY and Kalnin NN (1990). Biopolymers 30: 1243

    CAS  Google Scholar 

  38. Venyaminov SY and Kalnin NN (1990). Biopolymers 30: 1259

    CAS  Google Scholar 

  39. Kalnin NN, Baikalov IA and Venyaminov SY (1990). Biopolymers 30: 1273

    CAS  Google Scholar 

  40. Baumruk V, Pancoska P and Keiderling TA (1996). J Mol Biol 259: 774

    CAS  Google Scholar 

  41. Iftimie R and Tuckerman ME (2006). Angew Chem Int Ed 45: 1144

    CAS  Google Scholar 

  42. Steiner T (2002). Angew Chem Int Ed 41: 48

    CAS  Google Scholar 

  43. Gorelsky SI, Solomon EI (2007) Theor Chem Acc doi:10.1007/ s00214-007–270-1

  44. Gorelsky SI, Solomon EI (2007) Theor Chem Acc doi:10.1007/ s00214-007-0289-3

  45. Venyaminov SY, Baikalov IA, Wu C-SC and Yang JT (1991). Anal Biochem 198: 250

    CAS  Google Scholar 

  46. Jalkanen KJ, Jürgensen VW, Claussen A, Jensen GM, Rahim A, Wade RC, Nardi F, Jung C, Nieminen RM, Degtyarenko IM, Herrmann F, Knapp-Mohammady M, Niehaus T, Frimand K and Suhai S (2006). Int J Quantum Chem 106: 1160

    CAS  Google Scholar 

  47. Malkin VG, Malkina OL, Eriksson LA, Salahub DR (1995) The calculation of NMR and ESR spectroscopy parameters using density functional theory. In: Seminario JM, Politzer P (eds) Modern density functional theory: a tool for chemistry, vol 2. Elsevier Science B.V., pp 273–347

  48. Eker F, Cao X, Nafie L, Huang Q and Schweitzer-Stenner R (2–3). J Phys Chem B 107: 358

    Google Scholar 

  49. Motta A, Reches M, Pappalardo L, Andreotti G and Gazit E (2005). Biochemistry 44: 14178

    Google Scholar 

  50. Nilsson A, Ogasawara H, Cavalleri M, Nordlund D, Nyberg M, Wernet Ph and Pettersson LGM (2005). J Chem Phys 122: 154505

    CAS  Google Scholar 

  51. Russell AJ and Spackman MA (2000). Mol Phys 98: 855

    CAS  Google Scholar 

  52. Russell AJ and Spackman MA (2000). Mol Phys 98: 867

    CAS  Google Scholar 

  53. Herrmann C and Reiher M (2007). Top Curr Chem 268: 85

    Article  CAS  Google Scholar 

  54. Zhu F, Issacs NW, Hecht L, Tranter GE and Barron LD (2006). Chirality 18: 103

    Google Scholar 

  55. Barron LD (2006). Curr Opin Struct Biol 16: 638

    CAS  Google Scholar 

  56. Barron LD, Hecht L, McColl IH and Blanch EW (2004). Mol Phys 102: 731

    CAS  Google Scholar 

  57. Bouř P (2004). J Chem Phys 121: 7545

    Google Scholar 

  58. Mahoney MW and Jorgensen WL (2000). J Chem Phys 112: 8910

    CAS  Google Scholar 

  59. Cabral do Couto P, Estácio SG and Costa Cabral BJ (2005). J Chem Phys 123: 054510

    CAS  Google Scholar 

  60. Degtyarenko IM, Jalkanen KJ, Gurtovenko AA and Nieminen RM (2007). J Phys Chem B 111: 4227

    CAS  Google Scholar 

  61. Onsager L (1936). J Am Chem Soc 58: 1486

    CAS  Google Scholar 

  62. Tomasi J and Persico M (1994). Chem Rev 94: 2027

    CAS  Google Scholar 

  63. Klamt A and Schüürmann G (1993). J Chem Soc Perkin Trans 2: 799–805

    Google Scholar 

  64. Klamt A (1995). J Phys Chem 99: 2224

    CAS  Google Scholar 

  65. Klamt A (1996). J PhysChem 100: 3349

    CAS  Google Scholar 

  66. Klamt A, Jonas V, Bürger T and Lohrenz JCW (1998). J Phys Chem 102: 5074

    CAS  Google Scholar 

  67. Miltner M, Miltner A and Friedl A (2006). Chemie Ingenieur Technik 78: 1087

    CAS  Google Scholar 

  68. Thanki N, Thornton JM and Goodfellow JM (1988). J Mol Biol 202: 637

    CAS  Google Scholar 

  69. Tomasi J, Mennucci B and Cammi R (2005). Chem Rev 105: 2999

    CAS  Google Scholar 

  70. Orozco M and Luque FJ (2000). Chem Rev 100: 4187

    CAS  Google Scholar 

  71. Cramer CJ and Truhlar DG (1999). Chem Rev 99: 2161

    CAS  Google Scholar 

  72. Lin H and Truhlar DG (2007). Theor Chem Acc 117: 185

    CAS  Google Scholar 

  73. McLain SE, Soper AK, Terry AE, Watts A (2007) J Phys Chem B doi:10.1021/jp068340f

  74. Murray CW, Laming GJ, Handy NC and Amos RD (1992). Chem Phys Lett 199: 551

    CAS  Google Scholar 

  75. Johnson BG and Frisch MJ (1993). Chem Phys Lett 216: 133

    CAS  Google Scholar 

  76. van Caillie C and Amos RD (2000). Chem Phys Lett 317: 159

    CAS  Google Scholar 

  77. Lowe MA, Alper JS, Kawiecki RW and Stephens PJ (1986). J Phys Chem 90: 41

    CAS  Google Scholar 

  78. Mirkin NG and Krimm S (1991). J Am Chem Soc 113: 9742

    CAS  Google Scholar 

  79. Williams RW (1992). Biopolymers 32: 829

    CAS  Google Scholar 

  80. Mirkim NG and Krimm S (1996). J Mol Struct 377: 219

    Google Scholar 

  81. Maple JR, Hwang M-J, Jalkanen KJ, Stockfisch TP and Hagler AT (1998). J Comp Chem 19: 430

    CAS  Google Scholar 

  82. Schellman JA (1975). Chem Rev 75: 323

    CAS  Google Scholar 

  83. Kawiecki RW, Devlin FJ, Stephens PJ and Amos RD (1991). J Phys Chem 95: 9817

    CAS  Google Scholar 

  84. Delgarno A (1959). Proc R Soc Lond Series A Math Phys Sci 251: 282

    Google Scholar 

  85. Delgarno A (1962). Adv Phys 11: 281

    Google Scholar 

  86. Delgarno A and Victor GA (1966). Proc Roy Soc Lond Series A Math Phys Sci 291: 291

    Google Scholar 

  87. Gerratt J and Mills IM (1968). J Chem Phys 49: 1719

    Google Scholar 

  88. Amos RD (1984). Chem Phys Lett 108: 185

    CAS  Google Scholar 

  89. Hall GG (1951). Proc R Soc Lond Ser A Math Phys Sci 205: 541

    Article  CAS  Google Scholar 

  90. Hall GG (1959). Rep Prog Phys 22: 1

    CAS  Google Scholar 

  91. Roothaan CCJ (1951). Rev Mod Phys 23: 69

    CAS  Google Scholar 

  92. Salek P, Høst S, Thøgersen L, Jørgensen P, Manninen P, Olsen J, Jansik B, Reine S, Pawlowski F, Tellgren E, Helgaker T and Coriani S (2007). J Chem Phys 126: 114110

    Google Scholar 

  93. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG and Ziegler T (2001). J Comp Chem 22: 931

    CAS  Google Scholar 

  94. Wolff SK (2005). Int J Quant Chem 104: 645

    CAS  Google Scholar 

  95. Nicu VP, Neugebauer J, Wolff SK, Baerends EJ (2006) Theor Chem Acc doi:10.1007/s00214-006-0234-x

  96. Halls MD and Schlegel HB (1999). J Chem Phys 109: 10587

    Google Scholar 

  97. Jalkanen KJ, Jürgensen VW and Degtyarenko IM (2006). Adv Quantum Chem 50: 91

    Google Scholar 

  98. Ghosez P and Gonze X (2000). J Phys Consens Matter 12: 9179

    CAS  Google Scholar 

  99. Stephens PJ (1985). J Phys Chem 89: 748

    CAS  Google Scholar 

  100. Amos RD, Handy NC, Jalkanen KJ and Stephens PJ (1987). Chem Phys Lett 133: 21

    CAS  Google Scholar 

  101. Stephens PJ (1987). J Phys Chem 91: 1712

    CAS  Google Scholar 

  102. Amos RD, Jalkanen KJ and Stephens PJ (1988). J Phys Chem 92: 5571

    CAS  Google Scholar 

  103. Stephens PJ, Jalkanen KJ, Amos RD, Lazzeretti P and Zanasi R (1990). J Phys Chem 94: 1811

    CAS  Google Scholar 

  104. Hunt KLC and Harris RA (1991). J Chem Phys 94: 6995

    CAS  Google Scholar 

  105. Nafie LA, Dukor RK and Freedman TB (2002). Vibrational circular dichroism. In: Chalmers, JM and Griffiths, PR (eds) Handbook of vibrational spectroscopy, pp 731–744. Wiley, Chichester

    Google Scholar 

  106. Buckingham AD, Fowler PW and Galwas PA (1987). J Chem Phys 112: 1

    CAS  Google Scholar 

  107. Barron LD and Buckingham AD (2001). Acc Chem Res 34: 781

    CAS  Google Scholar 

  108. Born M and Huang K (1964). Dynamical theory of crystal Lattices. Oxford University Press, Oxford

    Google Scholar 

  109. Mead CA and Moscowitz A (1967). Int J Quant Chem 1: 243

    CAS  Google Scholar 

  110. Jalkanen KJ, Stephens PJ, Amos RD and Handy NC (1988). J Phys Chem 92: 1781

    CAS  Google Scholar 

  111. Hansen AE, Stephens PJ, Bouman TD (1991) J Phys Chem

  112. Bak KL, Devlin FJ, Ashvar CS, Taylor PR, Frisch MJ and Stephens PJ (1995). J Phys Chem 99: 14918

    CAS  Google Scholar 

  113. Bak KL, Jørgensen P, Helgaker T, Ruud K and Jensen HJAa (1994). J Chem Phys 100: 6621

    Google Scholar 

  114. Bak KL, Jørgensen P, Helgaker T, Ruud K and Jensen HJAa (1993). J Chem Phys 98: 8873

    CAS  Google Scholar 

  115. Cheesman JR, Frisch MJ, Devlin FJ and Stephens PJ (1996). Chem Phys Lett 252: 211

    Google Scholar 

  116. Diem M (1993). Introduction to modern vibrational spectroscopy. Wiley, New York

    Google Scholar 

  117. Komornicki A and McIver JW (1979). J Chem Phys 70: 2014

    CAS  Google Scholar 

  118. Amos RD (1986). Chem Phys Lett 124: 376

    CAS  Google Scholar 

  119. Amos RD (1987). Molecular property derivatives. In: Lawly, KP (eds) Ab initio methods in quantum chemistry, pp 99–153. Wiley, New York

    Google Scholar 

  120. Frish MJ, Yamaguchi Y, Gaw JF, Schaefer III HF and Binkley JS (1986). J Chem Phys 84: 531

    Google Scholar 

  121. Johnson BG and Florian J (1995). Chem Phys Lett 247: 120

    CAS  Google Scholar 

  122. Stirling A (1996). J Chem Phys 104: 1254

    CAS  Google Scholar 

  123. Collier WB, Magdo I and Klots TD (1999). J Chem Phys 110: 5710

    CAS  Google Scholar 

  124. Halls MD and Schlegel HB (1999). J Chem Phys 111: 8819

    CAS  Google Scholar 

  125. van Caillie C and Amos RD (2000). Phys Chem Chem Phys 2: 2123

    CAS  Google Scholar 

  126. Jürgensen VW and Jalkanen KJ (2006). Phys Biol 3: S63

    Google Scholar 

  127. Buckingham AD (1967). Adv Chem Phys 12: 107

    CAS  Google Scholar 

  128. Atkins PW and Barron LD (1969). Mol Phys 16: 453

    CAS  Google Scholar 

  129. Barron LD and Buckingham AD (1971). Mol Phys 20: 1111

    CAS  Google Scholar 

  130. Fischer P and Hache F (2005). Chirality 17: 421

    CAS  Google Scholar 

  131. Amos RD (1982). Chem Phys Lett 87: 23

    CAS  Google Scholar 

  132. Helgaker T, Ruud K, Bak KL, Jørgensen P and Olsen J (1994). Faraday Discuss 99: 165

    CAS  Google Scholar 

  133. Polavarapu PL (1990). J Phys Chem 94: 8106

    CAS  Google Scholar 

  134. Barron LD, Gargaro AR, Hecht L and Polavarapu PL (1991). Spectrochim Acta A 47: 1001

    Google Scholar 

  135. Barron LD, Gargaro AR, Hecht L and Polavarapu PL (1991). Spectrochim Acta A 48A: 261

    Google Scholar 

  136. Barron LD (1982). Molecular light scattering and optical activity, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  137. Barron LD, Bogaard MP and Buckingham AD (1973). J Am Chem Soc 95: 603

    CAS  Google Scholar 

  138. Hecht L and Barron LD (1990). Appl Spectrosc 44: 483

    CAS  Google Scholar 

  139. Barron LD (2004). Molcular light scattering and optical activity 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  140. Hecht L, Barron LD and Hug W (1989). Chem Phys Lett 158: 341

    CAS  Google Scholar 

  141. Barron LD, Ford SJ, Bell AF, Wilson G, Hecht L and Cooper A (1994). Faraday Discuss 99: 217

    CAS  Google Scholar 

  142. Yu G-S, Freedman TB, Nafie LA, Deng T and Polavarapu PL (1995). J Phys Chem 99: 835

    CAS  Google Scholar 

  143. Kim J, Kapitan J, Lakhani A, Bour P, Keiderling TA (2007) Theor Chem Acc doi:10.1007/s00214-006-0183-4 (this issue)

  144. Marinica DC, Grégoire G, Desfrançois C, Schermann JP, Borgis D and Gaigeot MP (2006). J Phys Chem A 110: 8802

    CAS  Google Scholar 

  145. Devlin F and Stephens PJ (1987). Appl Spectrosc 41: 1142

    CAS  Google Scholar 

  146. Diem M (1991). Vib Spectra Struct 19: 1

    CAS  Google Scholar 

  147. Nafie LA (1997). Annu Rev Phys Chem 48: 357

    CAS  Google Scholar 

  148. Nafie LA (1996). Appl Spectrosc 50: 14A

    CAS  Google Scholar 

  149. Ellzy MW, Jensen JO, Hameka HF and Kay JG (2003). Spectrochim Acta A 59: 2619

    Google Scholar 

  150. Cao X, Dukor RK, Nafie LA (2007) Theor Chem Acc doi:10.1007/ s00214-007-0284-8

  151. Dukor RK and Nafie LA (2000). Vibrational optical activity of pharmaceuticals and biomolecules. In: Meyers, RA (eds) Encyclopedia of analytical chemistry, pp 662–676. Wiley, Hoboken

    Google Scholar 

  152. Freedman TB, Cao X, Dukor RK and Nafie LA (2003). Chirality 15: 743

    CAS  Google Scholar 

  153. Fristrup P, Lassen PR, Johannessen C, Tanner D, Norrby P-O, Jalkanen KJ and Hemmingsen L (2006). J Phys Chem A 110: 9123

    CAS  Google Scholar 

  154. Fristrup P, Lassen PR, Tanner D, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-006-0186-1

  155. Stephens PJ, Devlin FJ, Schürch S, Hulliger J (2007) Theor Chem Acc doi:10.1007/s00214-006-0245-7

  156. Jalkanen KJ, Lassen PR, Hemmingsen L, Rodarte A, Degtyarenko IM, Nieminen RM, Christensen SB, Knapp-Mohammady M, Suhai S, Gale JD (2007) Theor Chem Account (this issue)

  157. Bieri M, Gautier C and Bürgi (2007). Phys Chem Chem Phys 9: 671

    CAS  Google Scholar 

  158. McDowell SAC, Buckingham AD (2007) Theor Chem Acc doi:10.1007/ s00214-006-0182-5

  159. Nafie LA (1997). J Phys Chem A 101: 7826

    CAS  Google Scholar 

  160. Hug W, Fedorovsky M (2007) Theor Chem Acc doi:10.1007/ s00214-006-0185-2

  161. Jalkanen KJ, Gale JD, Jalkanen GJ, McIntosh D, El Azhary A, Keiderling TA, Jensen GM (2007) Theor Chem Account (this issue)

  162. Jalkanen KJ and Stephens PJ (1991). J Phys Chem 95: 5446

    CAS  Google Scholar 

  163. Parsons MT and Koga Y (2005). J Chem Phys 123: 234504–1

    Google Scholar 

  164. Ramaekers R, Pajak J, Lambie B and Maes G (2004). J Chem Phys 120: 4182

    CAS  Google Scholar 

  165. Marèchal Y (1996). Faraday Discuss 103: 349

    Google Scholar 

  166. Wüthrich K, Billeter M, Güntert P, Luginhühl P, Riek R and Wider G (1996). Faraday Discuss 103: 245

    Google Scholar 

  167. Barlow DJ and Thornton JM (1988). J Mol Biol 201: 601

    CAS  Google Scholar 

  168. Baldwin RL (1989). Trends Biochem Sci 14: 291

    CAS  Google Scholar 

  169. Deisenhofer J (2000). Mutat Res 460: 143

    CAS  Google Scholar 

  170. Todo T (1999). Mutat Res 434: 89

    CAS  Google Scholar 

  171. Berg BJV and Sancar GB (1998). J Biol Chem 273: 20276

    Google Scholar 

  172. Langenbacher T, Zhao X, Bieser G, Heelis PF, Sancar A and Michel-Beyerle ME (1997). J Am Chem Soc 119: 10532

    CAS  Google Scholar 

  173. Todo T, Takemori H, Ryo H, Ihara M, Matsunaga T, Nikaido O, Sato K and Normura T (1993). Naure 361: 371

    CAS  Google Scholar 

  174. Cheam TC and Krimm S (1989). J Mol Struct (Theochem) 188: 15

    Google Scholar 

  175. Balázs A (1990). J Phys Chem 90: 2754

    Google Scholar 

  176. Cheam TC (1993). J Mol Struct 295: 259

    CAS  Google Scholar 

  177. Beglov , Dmitrii , Roux and Benoit (1995). Biopolymers 35: 171

    CAS  Google Scholar 

  178. Poon C-D, Samulski ET, Weise CF and Weisshaar JC (2000). J Am Chem Soc 122: 5642

    CAS  Google Scholar 

  179. Weise CF and Weisshaar JC (2003). J Phys Chem B 107: 3265

    CAS  Google Scholar 

  180. Nafie LA (2007) Theor Chem Acc doi:10.1007/s00214-007-0267-9

  181. Lehmann MS, Koetzle TF and Hamilton WC (1972). J Am Chem Soc 94: 2657

    CAS  Google Scholar 

  182. Diem M, Polavarapu PL, Oboodi M and Nafie LA (1982). J Am Chem Soc 104: 3329

    CAS  Google Scholar 

  183. Diem M (1988). J Am Chem Soc 110: 6967

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Jalkanen.

Additional information

Festschift in Honor of Philip J. Stephens’ 65th Birthday.

During the proof stage of this article a very relevant article has been published by M. Losada and Y. Xu titled “Chirality transfer through hydrogen-bonding: Experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water” in Phys Chem Chem Phys 2007, 9: 3127–3135. In that work they confirm that the effects of water are seen in the VCD spectra and hence it is fundamental to include explicit water molecules in modeling studies of the vibrational spectra of biomolecules in aqueous solution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalkanen, K.J., Degtyarenko, I.M., Nieminen, R.M. et al. Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental approach. Theor Chem Account 119, 191–210 (2008). https://doi.org/10.1007/s00214-007-0361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0361-z

Keywords

Navigation