Advertisement

Theoretical Chemistry Accounts

, Volume 126, Issue 5–6, pp 315–322 | Cite as

Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond

  • Yan Zhang
  • Hai LinEmail author
Regular Article

Abstract

Recently, based on the principle of electronic chemical potential equalization and the principle of charge conservation, we proposed a flexible-boundary scheme that allows both partial charge transfer and self-consistent polarization between the quantum mechanical (QM) and molecular mechanical (MM) subsystems in QM/MM calculations; the scheme was applied to study the atomic charges in selected ion–solvent complexes. In the present contribution, we further extend the flexible-boundary treatment to handle the QM/MM boundary passing through covalent bonds. We find that the flexible-boundary redistributed charge and dipole schemes yield reasonable agreement with full-QM calculations for a number of molecular ions and amino acids with charged side chains. Using the full-QM results as reference, the mean unsigned deviations are computed to be 0.06 e for atomic partial charges of the QM atoms, 0.11 e for the amounts of charge transfer between the QM and MM subsystems, and 0.016 Å for the lengths of the covalent bonds that directly connect the QM and MM subsystems. The results indicate the importance of accounting for partial charge transfer across the QM/MM boundary when the QM subsystems are charged.

Keywords

Combined QM/MM Partial charge transfer Electronegativity equalization Boundary treatments 

Notes

Acknowledgments

This work is supported by the Research Corporation. We thank the National Cancer Institute-Frederick Advanced Biomedical Computing Center and the Minnesota Supercomputing Institute for providing CPU time and access to the Gaussian03 program.

Supplementary material

214_2009_704_MOESM1_ESM.pdf (378 kb)
Supplementary material (PDF 377 kb)

References

  1. 1.
    Warshel A, Levitt M (1976) J Mol Biol 103:227CrossRefGoogle Scholar
  2. 2.
    Singh UC, Kollmann PA (1986) J Comput Chem 7:718CrossRefGoogle Scholar
  3. 3.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700CrossRefGoogle Scholar
  4. 4.
    Gao J (1996) Rev Comput Chem 7:119CrossRefGoogle Scholar
  5. 5.
    Friesner RA, Beachy MD (1998) Curr Opin Struct Biol 8:257CrossRefGoogle Scholar
  6. 6.
    Gao J, Thompson MA (eds) (1998) Combined quantum mechanical and molecular mechanical methods, ACS symposium series 712. American Chemical Society, Washington, DCGoogle Scholar
  7. 7.
    Ruiz-López MF, Rivail JL (1998) In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, p 437Google Scholar
  8. 8.
    Monard G, Merz KM Jr (1999) Acc Chem Res 32:904CrossRefGoogle Scholar
  9. 9.
    Hillier IH (1999) Theochem 463:45CrossRefGoogle Scholar
  10. 10.
    Hammes-Schiffer S (2000) Acc Chem Res 34:273CrossRefGoogle Scholar
  11. 11.
    Sherwood P (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, vol 3. NIC-Directors, Princeton, p 285Google Scholar
  12. 12.
    Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569CrossRefGoogle Scholar
  13. 13.
    Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467CrossRefGoogle Scholar
  14. 14.
    Morokuma K (2002) Philos Trans R Soc Lond A Phys Sci Eng 360:1149CrossRefGoogle Scholar
  15. 15.
    Zhang Y (2005) J Chem Phys 122:024114/1Google Scholar
  16. 16.
    Fornili A, Loos P-F, Sironi M, Assfeld X (2006) Chem Phys Lett 427:236CrossRefGoogle Scholar
  17. 17.
    Lin H, Truhlar DG (2007) Theor Chem Acc 117:185CrossRefGoogle Scholar
  18. 18.
    Senn HM, Thiel W (2007) Top Curr Chem 268:173CrossRefGoogle Scholar
  19. 19.
    Hu H, Yang W (2008) Annu Rev Phys Chem 59:573CrossRefGoogle Scholar
  20. 20.
    Heyden A, Lin H, Truhlar DG (2007) J Phys Chem B 111:2231CrossRefGoogle Scholar
  21. 21.
    Kerdcharoen T, Liedl KR, Rode BM (1996) Chem Phys 211:313CrossRefGoogle Scholar
  22. 22.
    Kerdcharoen T, Morokuma K (2002) Chem Phys Lett 355:257CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Lin H (2008) J Chem Theory Comput 4:414CrossRefGoogle Scholar
  24. 24.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801CrossRefGoogle Scholar
  25. 25.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512CrossRefGoogle Scholar
  26. 26.
    Lin H, Truhlar DG (2005) J Phys Chem A 109:3991CrossRefGoogle Scholar
  27. 27.
    Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem A 102:4714CrossRefGoogle Scholar
  28. 28.
    Amara P, Field MJ, Alhambra C, Gao J (2000) Theor Chem Acc 104:336Google Scholar
  29. 29.
    Zhang Y, Lin H, Truhlar DG (2007) J Chem Theory Comput 3:1378CrossRefGoogle Scholar
  30. 30.
    Bakowies D, Thiel W (1996) J Comput Chem 17:87CrossRefGoogle Scholar
  31. 31.
    Mortier WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107:829CrossRefGoogle Scholar
  32. 32.
    Mortier WJ, Ghosh SK, Shankar S (1986) J Am Chem Soc 108:4315CrossRefGoogle Scholar
  33. 33.
    Rappé AK, Goddard WA (1991) J Phys Chem 95:3358CrossRefGoogle Scholar
  34. 34.
    York DM, Yang W (1996) J Chem Phys 104:159CrossRefGoogle Scholar
  35. 35.
    Itskowitz P, Berkowitz ML (1997) J Phys Chem A 101:5687CrossRefGoogle Scholar
  36. 36.
    Yang Z-Z, Wang C-S (1997) J Phys Chem A 101:6315CrossRefGoogle Scholar
  37. 37.
    Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerings P, Waroquier M, Tollenaere JP (2002) J Phys Chem A 106:7887CrossRefGoogle Scholar
  38. 38.
    Lin H, Zhang Y, Truhlar DG (2007) QMMM, Version 1.3, University of MinnesotaGoogle Scholar
  39. 39.
    Tavernelli I, Vuilleumier R, Sprik M (2002) Phys Rev Lett 88:213002/1Google Scholar
  40. 40.
    Lin H, Zhang Y, Truhlar DG (2009) QMMM, Version 1.3.7, University of MinnesotaGoogle Scholar
  41. 41.
    Roothaan CCJ (1951) Rev Mod Phys 23:69CrossRefGoogle Scholar
  42. 42.
    Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chem Acc 93:281CrossRefGoogle Scholar
  43. 43.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  44. 44.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785Google Scholar
  45. 45.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265CrossRefGoogle Scholar
  47. 47.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976CrossRefGoogle Scholar
  48. 48.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225CrossRefGoogle Scholar
  49. 49.
    Jorgensen WL, McDonald NA (1998) Theochem 424:145CrossRefGoogle Scholar
  50. 50.
    McDonald NA, Jorgensen WL (1998) J Phys Chem B 102:8049CrossRefGoogle Scholar
  51. 51.
    Rizzo RC, Jorgensen WL (1999) J Am Chem Soc 121:4827CrossRefGoogle Scholar
  52. 52.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474CrossRefGoogle Scholar
  53. 53.
    Kahn K, Bruice TC (2002) J Comput Chem 23:977CrossRefGoogle Scholar
  54. 54.
    Singh UC, Kollman PA (1984) J Comput Chem 5:129CrossRefGoogle Scholar
  55. 55.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431CrossRefGoogle Scholar
  56. 56.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, Gaussian, IncGoogle Scholar
  57. 57.
    Ponder JW (2004) TINKER, Version 4.2, Washington UniversityGoogle Scholar
  58. 58.
    Löwdin P-O (1950) J Chem Phys 18:365CrossRefGoogle Scholar
  59. 59.
    Mulliken RS (1955) J Chem Phys 23:1833CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of Colorado DenverDenverUSA

Personalised recommendations