Skip to main content
Log in

Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Recently, based on the principle of electronic chemical potential equalization and the principle of charge conservation, we proposed a flexible-boundary scheme that allows both partial charge transfer and self-consistent polarization between the quantum mechanical (QM) and molecular mechanical (MM) subsystems in QM/MM calculations; the scheme was applied to study the atomic charges in selected ion–solvent complexes. In the present contribution, we further extend the flexible-boundary treatment to handle the QM/MM boundary passing through covalent bonds. We find that the flexible-boundary redistributed charge and dipole schemes yield reasonable agreement with full-QM calculations for a number of molecular ions and amino acids with charged side chains. Using the full-QM results as reference, the mean unsigned deviations are computed to be 0.06 e for atomic partial charges of the QM atoms, 0.11 e for the amounts of charge transfer between the QM and MM subsystems, and 0.016 Å for the lengths of the covalent bonds that directly connect the QM and MM subsystems. The results indicate the importance of accounting for partial charge transfer across the QM/MM boundary when the QM subsystems are charged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warshel A, Levitt M (1976) J Mol Biol 103:227

    Article  CAS  Google Scholar 

  2. Singh UC, Kollmann PA (1986) J Comput Chem 7:718

    Article  CAS  Google Scholar 

  3. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700

    Article  CAS  Google Scholar 

  4. Gao J (1996) Rev Comput Chem 7:119

    Article  CAS  Google Scholar 

  5. Friesner RA, Beachy MD (1998) Curr Opin Struct Biol 8:257

    Article  CAS  Google Scholar 

  6. Gao J, Thompson MA (eds) (1998) Combined quantum mechanical and molecular mechanical methods, ACS symposium series 712. American Chemical Society, Washington, DC

    Google Scholar 

  7. Ruiz-López MF, Rivail JL (1998) In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, p 437

    Google Scholar 

  8. Monard G, Merz KM Jr (1999) Acc Chem Res 32:904

    Article  CAS  Google Scholar 

  9. Hillier IH (1999) Theochem 463:45

    Article  CAS  Google Scholar 

  10. Hammes-Schiffer S (2000) Acc Chem Res 34:273

    Article  Google Scholar 

  11. Sherwood P (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, vol 3. NIC-Directors, Princeton, p 285

  12. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569

    Article  CAS  Google Scholar 

  13. Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467

    Article  CAS  Google Scholar 

  14. Morokuma K (2002) Philos Trans R Soc Lond A Phys Sci Eng 360:1149

    Article  CAS  Google Scholar 

  15. Zhang Y (2005) J Chem Phys 122:024114/1

    Google Scholar 

  16. Fornili A, Loos P-F, Sironi M, Assfeld X (2006) Chem Phys Lett 427:236

    Article  CAS  Google Scholar 

  17. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185

    Article  CAS  Google Scholar 

  18. Senn HM, Thiel W (2007) Top Curr Chem 268:173

    Article  CAS  Google Scholar 

  19. Hu H, Yang W (2008) Annu Rev Phys Chem 59:573

    Article  CAS  Google Scholar 

  20. Heyden A, Lin H, Truhlar DG (2007) J Phys Chem B 111:2231

    Article  CAS  Google Scholar 

  21. Kerdcharoen T, Liedl KR, Rode BM (1996) Chem Phys 211:313

    Article  CAS  Google Scholar 

  22. Kerdcharoen T, Morokuma K (2002) Chem Phys Lett 355:257

    Article  CAS  Google Scholar 

  23. Zhang Y, Lin H (2008) J Chem Theory Comput 4:414

    Article  CAS  Google Scholar 

  24. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  25. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  26. Lin H, Truhlar DG (2005) J Phys Chem A 109:3991

    Article  CAS  Google Scholar 

  27. Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem A 102:4714

    Article  CAS  Google Scholar 

  28. Amara P, Field MJ, Alhambra C, Gao J (2000) Theor Chem Acc 104:336

    CAS  Google Scholar 

  29. Zhang Y, Lin H, Truhlar DG (2007) J Chem Theory Comput 3:1378

    Article  Google Scholar 

  30. Bakowies D, Thiel W (1996) J Comput Chem 17:87

    Article  CAS  Google Scholar 

  31. Mortier WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107:829

    Article  CAS  Google Scholar 

  32. Mortier WJ, Ghosh SK, Shankar S (1986) J Am Chem Soc 108:4315

    Article  CAS  Google Scholar 

  33. Rappé AK, Goddard WA (1991) J Phys Chem 95:3358

    Article  Google Scholar 

  34. York DM, Yang W (1996) J Chem Phys 104:159

    Article  CAS  Google Scholar 

  35. Itskowitz P, Berkowitz ML (1997) J Phys Chem A 101:5687

    Article  CAS  Google Scholar 

  36. Yang Z-Z, Wang C-S (1997) J Phys Chem A 101:6315

    Article  CAS  Google Scholar 

  37. Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerings P, Waroquier M, Tollenaere JP (2002) J Phys Chem A 106:7887

    Article  CAS  Google Scholar 

  38. Lin H, Zhang Y, Truhlar DG (2007) QMMM, Version 1.3, University of Minnesota

  39. Tavernelli I, Vuilleumier R, Sprik M (2002) Phys Rev Lett 88:213002/1

    Google Scholar 

  40. Lin H, Zhang Y, Truhlar DG (2009) QMMM, Version 1.3.7, University of Minnesota

  41. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Article  CAS  Google Scholar 

  42. Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chem Acc 93:281

    Article  CAS  Google Scholar 

  43. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785

    CAS  Google Scholar 

  45. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  46. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  47. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976

    Article  CAS  Google Scholar 

  48. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  49. Jorgensen WL, McDonald NA (1998) Theochem 424:145

    Article  CAS  Google Scholar 

  50. McDonald NA, Jorgensen WL (1998) J Phys Chem B 102:8049

    Article  CAS  Google Scholar 

  51. Rizzo RC, Jorgensen WL (1999) J Am Chem Soc 121:4827

    Article  CAS  Google Scholar 

  52. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474

    Article  CAS  Google Scholar 

  53. Kahn K, Bruice TC (2002) J Comput Chem 23:977

    Article  CAS  Google Scholar 

  54. Singh UC, Kollman PA (1984) J Comput Chem 5:129

    Article  CAS  Google Scholar 

  55. Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431

    Article  CAS  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, Gaussian, Inc

  57. Ponder JW (2004) TINKER, Version 4.2, Washington University

  58. Löwdin P-O (1950) J Chem Phys 18:365

    Article  Google Scholar 

  59. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Research Corporation. We thank the National Cancer Institute-Frederick Advanced Biomedical Computing Center and the Minnesota Supercomputing Institute for providing CPU time and access to the Gaussian03 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Lin, H. Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond. Theor Chem Acc 126, 315–322 (2010). https://doi.org/10.1007/s00214-009-0704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0704-z

Keywords

Navigation