Skip to main content
Log in

The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

We present a series of calculations designed to identify an economical basis set for geometry optimizations and partial charge calculations on medium-size molecules, including neutrals, cations, and anions, with special emphasis on functional groups that are important for biomolecules and drug design. A new combination of valence basis functions and polarization functions, called the MIDI! basis set, is identified as a good compromise of speed and accuracy, yielding excellent geometries and charge balances at a cost that is as affordable as possible for large molecules. The basis set is optimized for molecules containing H, C, N, O, F, P, S, and Cl. Although much smaller than the popular 6-31G* basis set, in direct comparisons it yields more accurate geometries and charges as judged by comparison to MP2/cc-pVDZ calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feller D, Davidson ER (1990) Rev Comp Chem 1:1

    Google Scholar 

  2. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986)Ab initio molecular orbital theory. John Wiley, New York

    Google Scholar 

  3. Dunning TH Jr (1989) J Chem Phys 90:1007. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Google Scholar 

  4. Del Bene JE, Aue DH, Shavitt I (1992) J Am Chem Soc 114:1631

    Google Scholar 

  5. Raghavachari K, Trucks GW, Pople JA, Head-Gordan M (1989) Chem Phys Lett 157:479

    Google Scholar 

  6. Corchado JC, Espinosa-Garcia J, Hu W-P, Rossi I, Truhlar DG (1995) J Phys Chem 99:687

    Google Scholar 

  7. Politzer P, Truhlar DG (eds) (1981), Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  8. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Google Scholar 

  9. Chirlian LE, Francl MM (1987) J Comput Chem 8:894

    Google Scholar 

  10. Burley SK, Petsko GA (1988) Adv Protein Chem 39:125

    Google Scholar 

  11. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Google Scholar 

  12. Merz KM (1992) J Comput Chem (1995) 13:749

    Google Scholar 

  13. Cramer CJ, Truhlar DG (1993) J Am Chem Soc 115:8810

    Google Scholar 

  14. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Google Scholar 

  15. Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) J Chem Phys 52:2769

    Google Scholar 

  16. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  17. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Google Scholar 

  18. Collins JB, Schleyer PR, Binkley JS, Pople JA (1976) J Chem Phys 64:5142

    Google Scholar 

  19. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Google Scholar 

  20. Tatewaki H, Huzinaga S (1980) J Comput Chem 1:205

    Google Scholar 

  21. Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) In: Huzinaga S (ed) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

    Google Scholar 

  22. Pietro WJ, Francl MM, Hehre WJ, DeFrees DJ, Pople JA, Binkley JS (1982) J Amer Chem Soc 104:5039

    Google Scholar 

  23. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Google Scholar 

  24. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1983) J Am Chem Soc 104:2797

    Google Scholar 

  25. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026

    Google Scholar 

  26. Dunning TH Jr, Hay PJ (1977) In: Schaefer HF III (ed) Methods of electronic structure theory. Plenum, New York, p. 1

    Google Scholar 

  27. Pulay P, Fogarasi G, Pang F, Boggs JE (1979) J Am Chem Soc 101:2250

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Wong MW, Foresman JB, Robb MA, Head-Gordon M, Repolgle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1993) GAUSIAN92/DFT. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  29. Mulliken RS (1955) J Chem Phys 23:1833

    Google Scholar 

  30. Cramer CJ, Truhlar DG (1995) Rev Comp Chem 6:1

    Google Scholar 

  31. Cramer CJ, Truhlar DG (in press) In: Tapia O, Bertrán J (eds) Solvent effects and chemical reactivity. Kluwer, Dordrecht

  32. Storer JW, Giesen DJ, Cramer CJ, Truhlar DG (1995) J Computer-Aided Molec Des 9:87

    Google Scholar 

  33. Boggs JE, Niu Z (1985) J Comput Chem 6:46

    Google Scholar 

  34. Niu Z, Boggs JE (1984) J Mol Struct (Theochem) 109:381

    Google Scholar 

  35. Wong MW, Wiberg KB (1992) J Phys Chem 96:668

    Google Scholar 

  36. Šponer J, Hobza P (1994) J Mol Struct (Theochem) 304:35

    Google Scholar 

  37. Boggs JE, Cordell FR (1981) J Mol Struct (Theochem) 76:329

    Google Scholar 

  38. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Google Scholar 

  39. Scuseria G, Schaefer HF III (1989) J Chem Phys 90:3269

    Google Scholar 

  40. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622

    Google Scholar 

  41. Alkorta I (1994) Theor Chim Acta 89:1

    Google Scholar 

  42. Gilheany DG (1994) Chem Rev 94:1339

    Google Scholar 

  43. Tatewaki H, Huzinaga S (1979) J Chem Phys 71:4339

    Google Scholar 

  44. Tatewaki H, Huzinaga S (1980) J Chem Phys 72:399

    Google Scholar 

  45. Sakai Y, Tatewaki H, Huzinaga S (1982) J Comput Chem 3:6

    Google Scholar 

  46. Sargent AL, Hall MB (1991) J Comput Chem 12:923

    Google Scholar 

  47. Sakai Y, Tatewaki H, Huzinaga S (1981) J Comput Chem 2:100

    Google Scholar 

  48. McMurchie L, Elbert S, Langhoff S, Davidson ER, Feller D, Cave R, Rawlings D, Frey R, Daasch R, Nitchie L, Phillips P, Iberle K, Jackels C (1984) MELDF-X program suite. Indiana University, Bloomington, IN

    Google Scholar 

  49. Feller D, Schuchardt K, Jones D (1995) Extensible computational chemistry environment basis set database, Version 1.0, Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory (http://www.emsl.pnl.gov:2080/forms/basisform.html and http://www.dl.ac.uk/emsl_pnl/basisform.html)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Easton, R.E., Giesen, D.J., Welch, A. et al. The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges. Theoret. Chim. Acta 93, 281–301 (1996). https://doi.org/10.1007/BF01127507

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127507

Key words

Navigation