Skip to main content
Log in

Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract.

Crystal orbital adapted Gaussian (4s4p3d), (5s5p4d) and (6s6p5d) valence primitive basis sets have been derived for calculating periodic bulk materials containing trivalent lanthanide ions modeled with relativistic energy-consistent 4f-in-core lanthanide pseudopotentials of the Stuttgart-Koeln variety. The calibration calculations of crystalline A-type Pm2O3 using different segmented contraction schemes (4s4p3d)/[2s2p2d], (4s4p3d)/[3s3p2d], (5s5p4d)/[2s2p2d], (5s5p4d)/[3s3p3d], (5s5p4d)/[4s4p3d], (6s6p5d)/[2s2p2d], (6s6p5d)/[3s3p3d] and (6s6p5d)/[4s4p4d] are discussed at both Hartree–Fock (HF) and density functional theory (DFT) levels for the investigation of basis set size effects. Applications to the geometry optimization of A-type Ln2O3 (Ln = La-Pm) show a satisfactory agreement with experimental data using the lanthanide valence basis sets (6s6p5d)/[4s4p4d] and the standard set 6-311G* for oxygen. The corresponding augmented sets (8s7p6d)/[6s5p5d] with additional diffuse functions for describing neutral lanthanide atoms were applied to calculate atomic energies of free lanthanide atoms for the evaluation of cohesive energies for A-Ln2O3 within both conventional Kohn-Sham DFT and the a posteriori-HF correlation DFT schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pyykkö P (1987) Inorg Chim Acta 139:243–245

    Google Scholar 

  2. Balasubramanian K (1994) Handbook on the physics and chemistry of rare earths. In: Gschneidner KA Jr, Eyring L (eds). Elsevier, Amsterdam, vol 18, p 29

  3. Dolg M, Stoll H (1996) Handbook on the physics and chemistry of rare earths. In: Gschneidner KA Jr, Eyring L (eds). Elsevier, Amsterdam, vol 22, p 607

  4. Dolg M (1998) Encyclopedia of computational chemistry. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schäfer III HF, Schreiner PR (eds.). Wiley, Chichester, p 1478

  5. Pepper M, Bursten B (1991) Chem Rev 91:719–741

    Google Scholar 

  6. Schreckenbach G, Hay PJ, Martin RL (1999) J Comput Chem 20:70–79

    Google Scholar 

  7. Dolg M, Cao XY (2004) Recent advances in computational chemistry. In: Hirao K, Ishikawa Y (eds). World Scientific Publishing, New Jersey, vol 5, p 1

  8. Eliav E, Kaldor U (1995) Phys Rev A 52:291–296

    Google Scholar 

  9. Kutzelnigg W (1987) Phys Scr 36:416–431

    Google Scholar 

  10. Sakai Y, Miyoshi E, Tatewaki H (1998) J Mol Struct (Theochem) 451:143–150

    Google Scholar 

  11. Seijo L, Barandiaran Z, Harguindey E (2000) J Chem Phys 114:118–129

    Google Scholar 

  12. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173–194

    Google Scholar 

  13. Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730–1734

    Google Scholar 

  14. Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555–5565

    Google Scholar 

  15. Ross RB, Gayen S, Ermler WC (1994) J Chem Phys 100:8145–8155

    Google Scholar 

  16. Dolg M, Stoll H (1989) Theor Chim Acta 75:369–387

    Google Scholar 

  17. Dolg M, Fulde P, Küchle W, Neumann CS, Stoll H (1991) J Chem Phys 94:3011–3017

    Google Scholar 

  18. Cao XY, Dolg M (2001) J Chem Phys 115:7348–7355

    Google Scholar 

  19. Cao XY, Dolg M (2002) J Mol Struct (Theochem) 581:139–147

    Google Scholar 

  20. Perottoni CA, Pereira AS, da Jornada JAH (2000) J Phys (Condensed Matter) 12:7205–7222

    Google Scholar 

  21. Pisani C, Dovesi R (1980) Int J Quantum Chem 17:501–516

    Google Scholar 

  22. Dovesi R, Pisani C, Roetti C, Saunders VR (1983) Phys Rev B 28:5781–5792

    Google Scholar 

  23. Dovesi R (1986) Int J Quantum Chem 29:1755–1774

    Google Scholar 

  24. Pisani C, Dovesi R, Roetti C (1996) Hartree–Fock ab-initio treatment of crystalline systems. Lecture Notes in Chemistry. Springer, Berlin Heidelberg NewYork

  25. Kalvoda S, Dolg M, Flad HJ, Fulde P, Stoll H (1998) Phys Rev B 57:2127–2133

    Google Scholar 

  26. Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush IJ, D’Arco Ph, Llunell M (2003) CRYSTAL2003 1.0 User’s Manual, August 7

  27. Dolg M, Stoll H, Preuss H (1993) Theor Chim Acta 85:441–450

    Google Scholar 

  28. Pitzer RM (1979) Atomic electronic structure code ATMSCF. The Ohio State University, Columbus

  29. Froese Fischer C (1977) The Hartree–Fock method for atoms program MCHF. Wiley, New York. Modified version for pseudopotential and quasirelativistic calculations by Dolg M (1987)

  30. Becke AD (1993) J Chem Phys 98:5648–5652

    Google Scholar 

  31. Perdew JP, Yue W (1986) Phys Rev B 33:8800–8802

    Google Scholar 

  32. Perdew JP (1989) Phys Rev B 40:3399–3399

    Google Scholar 

  33. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Google Scholar 

  34. Perdew JP (1991) Electronic structure of solids. Akademie Verlag, Berlin

  35. Han YK, Hirao K (2000) Chem Phys Lett 318:453–458

    Google Scholar 

  36. Petukhov AG, Lambrecht WRL, Segall B (1996) Phys Rev B 53:4324–4339

    Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Google Scholar 

  38. Zicovich-Wilson CM Departamento de Fisica, Universidad Autonoma del Estado de Morelos, http://www.crystal.unito.it/ LoptCG/LoptCG.html

  39. Causà M, Dovesi R, Pisani C, Roetti C (1986) Phys Rev B 33:1308–1316

    Google Scholar 

  40. MOLPRO is a package of ab initio programs written by Werner HJ and Knowles PJ, with contributions from Amos RD, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Leininger T, Lindh R, Lloyd AW, Meyer W, Mura ME, Nicklass A, Palmieri P, Peterson K, Pitzer R, Pulay P, Rauhut G, Schütz M, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T and Werner HJ

  41. Wilson LC, Levy M (1990) Phys Rev B 41:12930–12932

    Google Scholar 

  42. Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  43. MüllerBu H, Vonschne HG (1965) Z Anorg Allg Chem 340:232

    Google Scholar 

  44. MüllerBu (1966) Z Anorg Allg Chem 343:6

    Google Scholar 

  45. Erying L, Holmberg B (1963) Advanced in chemistry series, American Chemical Society, Washington, vol 39, p 46

  46. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Rev Comput Chem 8:63

    Google Scholar 

  47. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH Verlag, Weinheim

  48. Hirosaki N, Ogata S, Kocer C (2003) J Alloys Comp 351:31–34

    Google Scholar 

  49. Wang YX, Dolg M (1998) Theor Chem Acc 100:124–133

    Google Scholar 

  50. Martin WC, Zalubas R, Hagan L (1978) Atomic energy levels – the rare earth elements, NSRDS-NBS-60, National Bureau of Standards, US Department of Commerce

  51. D’Arco P, Sandrone G, Dovesi R, Orlando R, Saunders VR (1993) Phys Chem Minerals 20:407–414

    Google Scholar 

  52. Causà M, Dovesi R, Roetti C (1991) Phys Rev B 43:11937–11943

    Google Scholar 

  53. Aprà E, Causà M, Prencipe M, Dovesi R, Saunders VR (1993) J Phys (Condensed Matter) 5:2969–2976

    Google Scholar 

  54. Gmelin Handbuch der Anorganischen Chemie (1974) Seltenerdelemente; Springer-Verlag, Berlin, Teil C1, 119

  55. Schiller G (1985) Dissertation Universität Karlsruhe, pp 1–110

  56. Bärnighausen H, Schiller G (1985) J Less-Common Metals 110:385–390

    Google Scholar 

  57. Greis O, Ziel R, Breidenstein B, Haase A, Petzel T (1992) J Alloys Compd 216:255–258

    Google Scholar 

  58. Faucher M, Pannetier J, Charreire Y, Caro P (1982) Acta Crystallogr B 38:344–346

    Google Scholar 

  59. Lide DR (2000–2001) Handbook of physics and chemistry, 81st edn., pp 9–63

  60. Chandrasekharaiah MS, Gingerich KA (1989) Handbook on the physics and chemistry of rare earths, North-Holland, Amsterdam, vol. 12, p 409

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Dolg, M. Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor Chem Acc 113, 212–224 (2005). https://doi.org/10.1007/s00214-005-0629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0629-0

Keywords

Navigation