Skip to main content
Log in

Comparison of first principles and semi-empirical models of the structural and electronic properties of \(\hbox {Ge}_{1-x}\hbox {Sn}_{x}\) alloys

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present and compare three distinct atomistic models—based on first principles and semi-empirical approaches—of the structural and electronic properties of \(\hbox {Ge}_{1-x}\hbox {Sn}_{x}\) alloys. Density functional theory calculations incorporating Heyd–Scuseria–Ernzerhof (HSE), local density approximation (LDA) and modified Becke–Johnson (mBJ) exchange-correlation functionals are used to perform structural relaxation and electronic structure calculations for a series of \(\hbox {Ge}_{1-x}\hbox {Sn}_{x}\) alloy supercells. Based on HSE calculations, a semi-empirical valence force field (VFF) potential and \(sp^{3}s^{*}\) tight-binding (TB) Hamiltonian are parametrised. Comparing the HSE, LDA+mBJ and VFF+TB models, and using the HSE results as a benchmark, we demonstrate that: (1) LDA+mBJ calculations provide an accurate first principles description of the electronic structure at reduced computational cost, (2) the VFF potential is sufficiently accurate to circumvent the requirement to perform first principles structural relaxation, and (3) VFF+TB calculations provide a good quantitative description of the alloy electronic structure in the vicinity of the band edges. Our results also emphasise the importance of Sn-induced band mixing in determining the nature of the conduction band structure of \(\hbox {Ge}_{1-x}\hbox {Sn}_{x}\) alloys. The theoretical models and benchmark calculations we present inform and enable predictive, computationally efficient and scalable atomistic calculations for disordered alloys and nanostructures. This provides a suitable platform to underpin further theoretical investigations of the properties of this emerging semiconductor alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  • Boykin, T.B., Klimeck, G., Bowen, R.C., Lake, R.: Effective-mass reproducibility of the nearest-neighbor \(sp^{3}s^{\ast }\) models: analytic results. Phys. Rev. B 56, 4102–4107 (1997)

    Article  ADS  Google Scholar 

  • Broderick, C.A., Dunne, M.D., Tanner, D.S.P., Kirwan, A.C., O’Halloran, E.J., Schulz, S., O’Reilly, E.P.: Atomistic analysis of localisation and band mixing effects in Ge\(_{1-x}\)(C,Sn)\(_{x}\) group-IV alloys, in Proceedings of the 18\({\rm th}\) IEEE International Conference on Nanotechnology (2018)

  • Broderick, C.A., Kirwan, A.C., Schulz, S., O’Reilly, E.P.: Electronic properties of elemental and compound group-IV materials: hybrid density functional theory and tight-binding parametrisation (2019a) (in preparation)

  • Broderick, C.A., O’Halloran, E.J., O’Reilly, E.P.: Comparative analysis of electronic structure evolution in Ge\(_{1-x}\)Sn\(_{x}\) and Ge\(_{1-x}\)Pb\(_{x}\) alloys, in Proceedings of the 19\({\rm th}\) International Conference on Numerical Simulation of Optoelectronic Devices (2019b)

  • Brudevoll, T., Citrin, D.S., Christensen, N.E., Cardona, M.: Calculated band structure of zinc-blende-type SnGe. Phys. Rev. B 48, 17128–17137 (1993)

    Article  ADS  Google Scholar 

  • Caro, M.A., Schulz, S., O’Reilly, E.P.: Theory of local electric polarization and its relation to internal strain: impact on polarization potential and electronic properties of group-III nitrides. Phys. Rev. B 88, 214103 (2013)

    Article  ADS  Google Scholar 

  • Chadi, D.J.: Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys. Rev. B 16, 790–796 (1977)

    Article  ADS  Google Scholar 

  • Chadi, D.J., Cohen, M.L.: Tight-binding calculations of the valence bands of diamond and zincblende crystals. Phys. Stat. Solidi B 68, 405–419 (1975)

    Article  ADS  Google Scholar 

  • Dybala, F., Żelazna, K., Maczko, H., Gladysiewicz, M., Misiewicz, J., Kudraweic, R., Lin, H., Chen, R., Shang, C., Huo, Y., et al.: Electromodulation spectroscopy of direct optical transitions in Ge\(_{1-x}\)Sn\(_{x}\) layers under hydrostatic pressure and built-in strain. J. Appl. Phys. 119, 215703 (2016)

    Article  ADS  Google Scholar 

  • Eales, T.D., Marko, I.P., Ghetmiri, S.A., Du, W., Zhou, Y., Yu, S.-Q., Margetis, J., Tolle, J., Schulz, S., O’Halloran, E.J., et al.: New experimental evidence for the nature of the band gap of Ge\(_{1-x}\)Sn\(_{x}\) alloys. Silic. Photon. XII Conf. 10108, 101080F (2017)

    Google Scholar 

  • Eales, T.D., Marko, I.P., Schulz, S., O’Halloran, E.J., Ghetmiri, S.A., Du, W., Zhou, Y., Yu, S.Q., Margetis, J., Tolle, J. et al.: Ge\(_{1-x}\)Sn\(_{x}\) alloys: consequences of band mixing effects for the evolution of the band gap \(\Gamma\)-character with Sn concentration, Sci. Rep. (2019) (in press)

  • Eckhardt, C., Hummer, K., Kresse, G.: Indirect-to-direct gap transition in strained Sn\(_{x}\)Ge\(_{1-x}\) alloys. Phys. Rev. B 89, 65201 (2014)

    Article  Google Scholar 

  • Fang, Y.-Y., Xie, J., Tolle, J., Roucka, R., D’Costa, V.R., Chizmeshya, A.V.G., Menendez, J., Kouvetakis, J.: Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics. J. Am. Chem. Soc. 130, 16095–16102 (2008)

    Article  Google Scholar 

  • Gale, J.D.: GULP: a computer program for the symmetry adapted simulation of solids. JCS Faraday Trans. 93, 629–637 (1997)

    Article  Google Scholar 

  • Gale, J.D.: GULP: capabilities and prospects. Z. Krist. 220, 552–554 (2005)

    Google Scholar 

  • Gale, J.D., Rohl, A.L.: The general utility lattice program. Mol. Simul. 29, 291–341 (2003)

    Article  Google Scholar 

  • Geiger, R., Zabel, T., Sigg, H.: Group IV direct gap photonics: methods, challenges, and opportunities. Front. Mater. 2, 52 (2015)

    Article  Google Scholar 

  • Groves, S.H., Pidgeon, C.R., Wagner, R.J.: Interband magnetoreflection of \(\alpha\)-Sn. J. Phys. Chem. Solids 31, 2031–2049 (1970)

    Article  ADS  Google Scholar 

  • He, G., Atwater, H.A.: Interband transitions in Sn\(_{x}\)Ge\(_{1-x}\) alloys. Phys. Rev. Lett. 79, 1937–1940 (1997)

    Article  ADS  Google Scholar 

  • Heyd, J., Scuseria, G.E.: Hybrid functionals based on a screened Coulomb potential: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004)

    Article  ADS  Google Scholar 

  • Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)

    Article  ADS  Google Scholar 

  • Khenata, R., Baltache, H., Sahnoun, M., Driz, M., Rérat, M., Abbar, B.: Full potential linearized augmented plane wave calculations of structural and electronic properties of GeC, SnC and GeSn. Phys. B 336, 321–328 (2003)

    Article  ADS  Google Scholar 

  • Kouvetakis, J., Menendez, J., Chizmeshya, A.V.G.: Tin-based group IV semiconductors: new platforms for opto- and microelectronics on silicon. Annu. Rev. Mater. Res. 36, 497–554 (2006)

    Article  ADS  Google Scholar 

  • Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996a)

    Article  ADS  Google Scholar 

  • Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996b)

    Article  Google Scholar 

  • Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  • Landolt, H., Börnstein, R.: Landolt-Börnstein: Condensed Matter, vol. III/41A1a. Springer (1982a)

  • Landolt, H., Börnstein, R.: Landolt-Börnstein: Condensed Matter, vol. III/41A1b. Springer (1982b)

  • Li, Y.-H., Walsh, A., Chen, S., Yin, W.-J., Yang, J.-H., Li, J., Da Silva, J.L.F., Gong, X.G., Wei, S.-H.: Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. Appl. Phys. Lett. 94, 212109 (2009)

    Article  ADS  Google Scholar 

  • Lindsay, A., O’Reilly, E.P.: Theory of enhanced bandgap non-parabolicity in GaN\(_{x}\)As\(_{1-x}\) and related alloys. Solid State Commun. 112, 443–447 (1999)

    Article  ADS  Google Scholar 

  • Margetis, J., Zhou, Y., Dou, W., Grant, P.C., Alharthi, B., et al.: All group-IV SiGeSn/GeSn/SiGeSn QW laser on Si operating up to 90K. Appl. Phys. Lett. 113, 221104 (2018)

    Article  Google Scholar 

  • Martin, R.M.: Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)

    Article  ADS  Google Scholar 

  • Moontragoon, P., Ikonić, Z., Harrison, P.: Band structure calculations of SiGeSn alloys: achieving direct band gap materials. Semicond. Sci. Technol. 22, 742–748 (2007)

    Article  ADS  Google Scholar 

  • Musgrave, M.J.P., Pople, J.A.: A general valence force field for diamond. Proc. R. Soc. Lond. A 268, 474–484 (1962)

    Article  ADS  Google Scholar 

  • Muñoz, M.C., Armelles, G.: \(X\)-point deformation potentials of III-V semiconductors in a tight-binding approach. Phys. Rev. B 48, 2839–2842 (1993)

    Article  ADS  Google Scholar 

  • O’Reilly, E.P., Lindsay, A., Tomić, S., Kamal-Saadi, M.: Tight-binding and k\(\cdot\) p models for the electronic structure of Ga(In)NAs and related alloys. Semicond. Sci. Technol. 17, 870–879 (2002)

    Article  ADS  Google Scholar 

  • Pandey, R., Rérat, M., Causà, M.: First-principles study of stability, band structure, and optical properties of the ordered Ge\(_{0.50}\)Sn\(_{0.50}\) alloy. Appl. Phys. Lett. 75, 4127–4129 (1999)

    Article  ADS  Google Scholar 

  • Polak, M.P., Schroch, P., Kudraweic, R.: The electronic band structure of Ge\(_{1-x}\)Sn\(_{x}\) in the full composition range: indirect, direct and inverted gaps regimes, band offsets and the Burstein-Moss effect. J. Phys. D: Appl. Phys. 50, 195103 (2017)

    Article  ADS  Google Scholar 

  • Reboud, V., Gassenq, A., Hartmann, J.M., Widiez, J., Virot, L., Aubin, J., Guilloy, K., Tardif, S., Fédéli, J.M., Pauc, N., et al.: Germanium based photonic components toward a full silicon/germanium photonic platform. Prog. Cryst. Growth Charact. 63, 1–24 (2017)

    Article  Google Scholar 

  • Roucka, R., Clark, A., Wilson, T., Thomas, T., Führer, M., Ekins-Daukes, N.J., Johnson, A., Hoffman, R., Begarney, D.: Demonstrating dilute-tin alloy SiGeSn for use in multijunction photovoltaics: single- and multijunction solar cells with a 1.0-eV SiGeSn junction. IEEE J. Photovolt. 6, 1025–1030 (2016)

    Article  Google Scholar 

  • Rücker, H., Enderlein, R., Bechstedt, F.: Strain effects on the band structure of Si/Si\(_{1-x}\)Ge\(_{x}\) (001) superlattices. Phys. Status Solidi B 158, 595–609 (1983)

    Google Scholar 

  • Rücker, H., Methfessel, M.: Anharmonic Keating model for group-IV semiconductors with applications to lattice dynamics in alloys of Si, Ge and C. Phys. Rev. B 52, 11509–11072 (1995)

    Article  Google Scholar 

  • Saito, S., Al-Attili, A.Z., Oda, K., Ishikawa, Y.: Towards monolithic integration of germanium light sources on silicon chips. Semicond. Sci. Technol. 31, 043002 (2016)

    Article  ADS  Google Scholar 

  • Santa, S., Schenk, A.: Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures. Appl. Phys. Lett. 105, 162101 (2014)

    Article  ADS  Google Scholar 

  • Schimka, L., Harl, J., Kresse, G.: Improved hybrid functional for solids: the HSEsol functional. J. Chem. Phys. 134, 024116 (2011)

    Article  ADS  Google Scholar 

  • Schulz, S., Caro, M.A., Tan, L.-T., Parbrook, P.J., Martin, R.W., O’Reilly, E.P.: Composition-dependent band gap and band-edge bowing in AlInN: a combined theoretical and experimental study. Appl. Phys. Express. 6, 121001 (2013)

    Article  ADS  Google Scholar 

  • Schulz, S., Broderick, C.A., O’Halloran, E.J., O’Reilly, E.P.: The nature of the band gap of Ge\(_{1-x}\)Sn\(_{x}\) alloys. In: Proceedings of the 18th International Conference on Numerical Simulation of Optoelectronic Devices, pp. 39–40 (2018)

  • Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  ADS  Google Scholar 

  • Soref, R.: Silicon-based silicon-germanium-tin heterostructure photonics. Philos. Trans. R. Soc. A 372, 0113 (2014)

    Article  Google Scholar 

  • Tanner, D.S.P., Broderick, C.A., Kirwan, A.C., Schulz, S., O’Reilly, E.P.: Elastic properties of elemental and compound group-IV materials: hybrid density functional theory and valence force field parametrisation (2019a) (in preparation)

  • Tanner, D.S.P., Caro, M.A., Schulz, S., O’Reilly, E.P.: Fully analytic valence force field model for the elastic and inner elastic properties of diamond and zincblende crystals (2019b). arXiv:1908.11245

  • Tanner, D.S.P.: A study of the elastic and electronic properties of III-nitride semiconductors, Ph.D. thesis, University College Cork, Ireland (2018)

  • Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.-M., et al.: Roadmap on silicon photonics. J. Opt. 18, 073003 (2016)

    Article  ADS  Google Scholar 

  • Timò, G., Abagnale, G., Armani, N., Calicchio, M., Schineller, B.: MOVPE SiGeSn development for the next generation four junction solar cells. AIP Conf. Proc. 2012, 040011 (2018)

    Article  Google Scholar 

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  • Usman, M., Broderick, C.A., Lindsay, A., O’Reilly, E.P.: Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys. Rev. B 84, 245202 (2011)

    Article  ADS  Google Scholar 

  • Usman, M., Broderick, C.A., O’Reilly, E.P.: Impact of disorder on the optoelectronic properties of GaN\(_{y}\)As\(_{1-x-y}\)Bi\(_{x}\) alloys and heterostructures. Phys. Rev. Appl. 10, 044024 (2018)

    Article  ADS  Google Scholar 

  • Vogl, P., Hjalmarson, H.P., Dow, J.D.: A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)

    Article  ADS  Google Scholar 

  • Winzer, P.J., Neilson, D.T.: From scaling disparities to integrated parallelism: a decathlon for a decade. J. Lightwave Technol. 35, 1099–1115 (2017)

    Article  ADS  Google Scholar 

  • Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., et al.: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photon. 9, 88–92 (2015)

    Article  ADS  Google Scholar 

  • Wirths, S., Tiedemann, A.T., Ikonic, Z., Harrison, P., Holländer, B., Stoica, T., Mussler, G., Myronov, M., Hartmann, J.M., Grützmacher, D., et al.: Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors. Appl. Phys. Lett. 102, 192103 (2013)

    Article  ADS  Google Scholar 

  • Yang, Y., Su, S., Guo, P., Wang, W., Gong, X., Wang, L., Low, K.L., Zhang, G., Xue, C., Cheng, B., et al.: Towards direct band-to-band tunneling in p-channel tunneling field effect transistor (TFET): technology enablement by germanium-tin (GeSn), in Proceedings of the International Electron Devices Meeting (2012)

  • Yin, W.-J., Gong, X.-G., Wei, S.-H.: Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the Sn\(_{x}\)Ge\(_{1-x}\) alloys. Phys. Rev. B 78, 161203 (2008)

    Article  ADS  Google Scholar 

  • Zaima, S., Nakatsuka, O., Taoka, N., Kurosawa, M., Takeuchi, W., Sakashita, M.: Growth and applications of GeSn-related group-IV semiconductor materials. Sci. Technol. Adv. Mater. 16, 043502 (2015)

    Article  Google Scholar 

  • Zhou, Z., Yin, B., Michel, J.: On-chip light sources for silicon photonics. Light Sci. Appl. 4, e358 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.J.O’H. and C.A.B. contributed equally to this work. This work was supported by Science Foundation Ireland (SFI; Project Nos. 15/IA/3082, 14/IA/2513 and 13/SIRG/2210), and by the National University of Ireland (NUI; via the Post-Doctoral Fellowship in the Sciences, held by C.A.B.). The authors acknowledge the provision of computing resources by SFI via Tyndall National Institute and the Irish Centre for High-End Computing (ICHEC; additional support for which is provided by the Higher Education Authority, as well as the Departments of Education and Skills, and Business, Enterprise and Innovation of the Government of Ireland). The authors thank Dr. Timothy D. Eales, Dr. Igor P. Marko, and Prof. Stephen J. Sweeney (University of Surrey, U.K.) for useful discussions, and for providing access to the results of their experimental measurements prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Broderick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’18.

Guest edited by Paolo Bardella, Weida Hu, Slawomir Sujecki, Stefan Schulz, Silvano Donati, Angela Traenhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Halloran, E.J., Broderick, C.A., Tanner, D.S.P. et al. Comparison of first principles and semi-empirical models of the structural and electronic properties of \(\hbox {Ge}_{1-x}\hbox {Sn}_{x}\) alloys. Opt Quant Electron 51, 314 (2019). https://doi.org/10.1007/s11082-019-1992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1992-8

Keywords

Navigation