Skip to main content
Log in

Generalization of the periodic LCAO approach in the CRYSTAL code to g-type orbitals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The Linear Combination of Atomic Orbitals approach implemented into the public Crystal program for quantum-chemical simulations of n-dimensional periodic systems (\(n = 0,1,2,3\)) is here extended to g-type basis functions. A general algorithmic procedure is devised for the calculation of the coefficients needed for the analytical evaluation of one- and two-electron integrals for energy and forces within the recursive McMurchie–Davidson strategy, up to arbitrarily high quantum numbers. Explicit routines are generated for the calculation of all the coefficients needed for g-type functions, which ensure a very high computational efficiency. The code has been generalized in many respects so as to allow for the use of g-type functions for: (1) Hartree–Fock energy and forces; (2) density functional theory energy and forces (in either a local density, generalized gradient, meta-GGA or various hybrid approximations); (3) all-electron and pseudo-potential basis sets; (4) spin-restricted and unrestricted calculations; (5) coupled-perturbed Hartree–Fock/Kohn–Sham (hyper)-polarizability calculations; (6) projected density-of-states. The g-type basis functions are expected to play an important role in (1) the description of the electronic structure of heavy elements and in particular of lanthanides and actinides with occupied 4f and 5f bands, respectively, where they represent the first polarization, (2) those calculations requiring an accurate description of the electronic polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dovesi R, Pisani C, Roetti C, Causà M, Saunders V (1988) CRYSTAL88. QCPE Program No. 577, Indiana University, Bloomington, IN

  2. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco Ph, Noël Y, Causá M, Rérat M, Kirtman B (2014) Int J Quantum Chem 114:1287

    Article  CAS  Google Scholar 

  3. Dovesi R, Erba A, Orlando R, Zicovich-Wilson CM, Civalleri B, Maschio L, Rérat M, Casassa S, Baima J, Salustro S, Kirtman B (2018) WIREs Comput Mol Sci

  4. Pisani C, Dovesi R, Roetti C (1988) Hartree–Fock ab initio treatment of crystalline solids, lecture notes in chemistry series, vol 48. Springer, Berlin

    Book  Google Scholar 

  5. Dovesi R, Pisani C, Roetti C, Saunders VR (1983) Phys Rev B 28:5781

    Article  CAS  Google Scholar 

  6. McMurchie LE, Davidson ER (1978) J Comput Phys 26(2):218

    Article  CAS  Google Scholar 

  7. Saunders V (1983) Methods in Computational Molecular Physics (113), 1

  8. Doll K, Saunders V, Harrison N (2001) Int J Quantum Chem 82(1):1

    Article  CAS  Google Scholar 

  9. Pople JA, Gill PM, Johnson BG (1992) Chem Phys Lett 199(6):557

    Article  CAS  Google Scholar 

  10. McMurchie LE, Davidson ER (1981) J Comput Phys 44(2):289

    Article  Google Scholar 

  11. Perdew JP, Schmidt K (2001) AIP Conf Proc 577(1):1

    CAS  Google Scholar 

Download references

Acknowledgements

J.K.D would like to acknowledge funding from a Vanier Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Erba.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 479 KB)

Appendices

A Recursion relations at work

We show here how the recursion relations presented in Refs. [7] and [4] can be used to generate the E coefficients to arbitrarily high quantum numbers. The starting point for these relations is \(E[0,0,0,0,0,0,0,0,0]=1\). Then, the recursion relations are used to generate the coefficients in the following order, where the bold quantum numbers indicate the ones being increased:

$$\begin{aligned}&(1) \ E[n,\mathbf{l },\mathbf{l },\tilde{n},0,0,t,u,v] \quad (2) \ E[n,0,0,\tilde{n},\tilde{\mathbf{l }},\tilde{\mathbf{l }},t,u,v]\\&(3) \ E[n,\mathbf{l },\mathbf{l },\tilde{n},\tilde{l},\tilde{l},t,u,v] \quad (4)\ E[n,\mathbf{l },0,\tilde{n},0,0,t,u,v] \\&(5)\ E[n,0,0,\tilde{n},\tilde{\mathbf{l }},0,t,u,v] \quad (6) \ E[n,\mathbf{l },0,\tilde{n},\tilde{l},0,t,u,v] \\&(7) \ E[n,\mathbf{l },\mathbf{l },\tilde{n},\tilde{l},0,t,u,v] \quad (8) \ E[n,0,0,\tilde{n},\tilde{\mathbf{l }},\tilde{\mathbf{m }},t,u,v]\\&(9) \ E[n,\mathbf{l },0,\tilde{n},\tilde{l},\tilde{m},t,u,v] \quad (10) \ E[n,\mathbf{l },\mathbf{l },\tilde{n},\tilde{l},\tilde{m},t,u,v] \\&(11) \ E[n,\mathbf{l },\mathbf{m },\tilde{n},\tilde{l},0,t,u,v] \quad (12) \ E[n,\mathbf{l },0,\tilde{n},\tilde{l},\tilde{l},t,u,v] \\&(13) \ E[n,\mathbf{l },\mathbf{m },\tilde{n},\tilde{l},\tilde{l},t,u,v] \quad (14) \ E[n,\mathbf{l },\mathbf{m },\tilde{n},\tilde{l},\tilde{m},t,u,v]\\&(15) \ E[\mathbf{n },l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v] \quad (16) \ E[n,l,m,\tilde{\mathbf{n }},\tilde{l},\tilde{m},t,u,v] \end{aligned}$$

At each step, the coefficients are generated for all of the \(N^E(l,\tilde{l})\) triplets t, u, v which have potentially nonzero contributions.

B Formulae for analytical force coefficients

The calculation of the \(G_k^K\) coefficients is similar to the procedure described in Appendix A, except that now the coefficients are zero for \(t+u+v > 2n+2\tilde{n}+l+\tilde{l}+1\) and the starting point of the recurrences is as follows [8]:

$$\begin{aligned} G_k^A[0,0,0,0,0,0,0,0,0]&= 2\frac{\alpha \beta }{\gamma }(B_k-A_k) \times \\&\times E[0,0,0,0,0,0,0,0,0] \end{aligned}$$

and

$$\begin{aligned} G_k^A[0,0,0,0,0,0,\delta _{kx},\delta _{ky},\delta _{kz}] = \frac{\alpha }{\gamma }E[0,0,0,0,0,0,0,0,0] \end{aligned}$$

Doll et al. [8] provide formulae for increasing the quantum numbers on center A of the \(G_x^A\); here we provide similar formulae for the \(G_y^A\) and \(G_z^A\) cases as well, which complete the formalism. The quantum numbers n and \(\tilde{n}\) are omitted from the formulae in which they are constant.

1.1 B.1 Recurrence in n

1.1.1 B.1.1 Derivative in y

$$\begin{aligned}&G_y^A[n+1,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v]\nonumber \\&=\frac{1}{(2\gamma )^2}\bigg ( G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t-2,u,v]\nonumber \\&\quad +\,G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u-2,v] \nonumber \\&\quad +\, G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v-2] \bigg ) \nonumber \\&\quad +\,\frac{1}{\gamma } \bigg ( -E[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\, (P_x-A_x)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad \,+(P_y-A_y)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad \,+(P_z-A_z)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v-1] \bigg ) \nonumber \\&\quad +\, \Big ( |\mathbf P -\mathbf A |^2+\frac{1}{\gamma }\big ( t+u+v+\frac{3}{2} \big ) \Big ) \nonumber \\&\quad \times G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad -\,2(P_y-A_y)E[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,2(t+1)(P_x-A_x)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,2(u+1)(P_y-A_y)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,2(v+1)(P_z-A_z)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v+1] \nonumber \\&\quad -\,2(u+1)E[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,(t+2)(t+1)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t+2,u,v] \nonumber \\&\quad +\,(u+2)(u+1)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u+2,v] \nonumber \\&\quad +\,(v+2)(v+1)G_y^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v+2] \end{aligned}$$
(17)

1.1.2 B 1.2 Derivative in z

$$\begin{aligned}&G_z^A[n+1,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v]\nonumber \\&=\frac{1}{(2\gamma )^2}\bigg ( G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t-2,u,v]\nonumber \\&\quad +\,G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u-2,v] \nonumber \\&\quad +\, G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v-2] \bigg ) \nonumber \\&\quad +\,\frac{1}{\gamma } \bigg ( -E[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v-1] \nonumber \\&\quad +\, (P_x-A_x)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad +\,(P_y-A_y)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\,(P_z-A_z)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v-1] \bigg ) \nonumber \\&\quad +\, \left( |\mathbf P -\mathbf A |^2+\frac{1}{\gamma }\big ( t+u+v+\frac{3}{2} \big ) \right) \nonumber \\&\quad \times G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad -\,2(P_z-A_z)E[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,2(t+1)(P_x-A_x)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,2(u+1)(P_y-A_y)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,2(v+1)(P_z-A_z)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v+1] \nonumber \\&\quad -\,2(v+1)E[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v+1] \nonumber \\&\quad +\,(t+2)(t+1)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t+2,u,v] \nonumber \\&\quad +\,(u+2)(u+1)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u+2,v] \nonumber \\&\quad +\,(v+2)(v+1)G_z^A[n,l,m,\tilde{n},\tilde{l},\tilde{m},t,u,v+2] \end{aligned}$$
(18)

1.2 B.2 Recurrence in l and m

1.2.1 B.2.1 Derivative in y

$$\begin{aligned}&G_y^A[l+1,l+1,\tilde{l},\tilde{m},t,u,v]\nonumber \\&=(2l+1)\bigg (-iE[l,l,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,\frac{1}{2\gamma }G_y^A[l,l,\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad +\,(t+1)G_y^A[l,l,\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,(P_x-A_x)G_y^A[l,l,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,i\frac{1}{2\gamma }G_y^A[l,l,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\,i(u+1)G_y^A[l,l,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,i(P_y-A_y)G_y^A[l,l,\tilde{l},\tilde{m},t,u,v]\bigg ) \end{aligned}$$
(19)

1.2.2 B.2.2 Derivative in z

$$\begin{aligned}&G_z^A[l+1,l+1,\tilde{l},\tilde{m},t,u,v]\nonumber \\&=(2l+1)\bigg (\frac{1}{2\gamma }G_z^A[l,l,\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad +\,(t+1)G_z^A[l,l,\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,(P_x-A_x)G_z^A[l,l,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,i\frac{1}{2\gamma }G_z^A[l,l,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\,i(u+1)G_z^A[l,l,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,i(P_y-A_y)G_z^A[l,l,\tilde{l},\tilde{m},t,u,v]\bigg ) \end{aligned}$$
(20)

1.3 B.3 Recurrence in l and − m

1.3.1 B.3.1 Derivative in y

$$\begin{aligned}&G_y^A[l+1,-l-1,\tilde{l},\tilde{m},t,u,v] \nonumber \\&=(2l+1)\bigg (iE[l,-l,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,\frac{1}{2\gamma }G_y^A[l,-l,\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad +\,(t+1)G_y^A[l,-l,\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,(P_x-A_x)G_y^A[l,-l,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad -\,i\frac{1}{2\gamma }G_y^A[l,-l,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad -\,i(u+1)G_y^A[l,-l,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad -\,i(P_y-A_y)G_y^A[l,-l,\tilde{l},\tilde{m},t,u,v]\bigg ) \end{aligned}$$
(21)

1.3.2 B.3.2 Derivative in z

$$\begin{aligned}&G_z^A[l+1,-l-1,\tilde{l},\tilde{m},t,u,v] \nonumber \\&=(2l+1)\bigg (\frac{1}{2\gamma }G_z^A[l,-l,\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad +\,(t+1)G_z^A[l,-l,\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,(P_x-A_x)G_z^A[l,-l,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad -\,i\frac{1}{2\gamma }G_z^A[l,-l,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad -\,i(u+1)G_z^A[l,-l,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad -\,i(P_y-A_y)G_z^A[l,-l,\tilde{l},\tilde{m},t,u,v]\bigg ) \end{aligned}$$
(22)

1.4 B.4 Recurrence in l

1.4.1 B.4.1 Derivative in y

$$\begin{aligned}&G_y^A[l+1,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&=\frac{(2l+1)}{(l- |m |+1)} \bigg \{ \frac{1}{2\gamma }G_y^A[l,m,\tilde{l},\tilde{m},t,u,v-1] \nonumber \\&\quad +\,(P_z-A_z)G_y^A[l,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,(v+1)G_y^A[l,m,\tilde{l},\tilde{m},t,u,v+1] \bigg \} \nonumber \\&\quad -\,\frac{(l+|m |)}{(l- |m |+1)} \bigg \{ \frac{1}{(2\gamma )^2}\Big (G_y^A[l-1,m,\tilde{l},\tilde{m},t-2,u,v]\nonumber \\&\quad +\,G_y^A[l-1,m,\tilde{l},\tilde{m},t,u-2,v] \nonumber \\&\quad +\,G_y^A[l-1,m,\tilde{l},\tilde{m},t,u,v-2] \Big ) \nonumber \\&\quad +\,\frac{1}{\gamma } \Big ( (P_x-A_x)G_y^A[l-1,m,\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad -\, E[l-1,m,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\,(P_y-A_y)G_y^A[l-1,m,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\,(P_z-A_z)G_y^A[l-1,m,\tilde{l},\tilde{m},t,u,v-1]\Big ) \nonumber \\&\quad +\,\Big ( |\mathbf P -\mathbf A |^2+\frac{1}{\gamma }\big ( t+u+v+\frac{3}{2} \big ) \Big ) \nonumber \\&\quad \times G_y^A[l-1,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad -\,2(P_y-A_y)E[l-1,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,2(t+1)(P_x-A_x)G_y^A[l-1,m,\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,2(u+1)(P_y-A_y)G_y^A[l-1,m,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,2(v+1)(P_z-A_z)G_y^A[l-1,m,\tilde{l},\tilde{m},t,u,v+1] \nonumber \\&\quad -\,2(u+1)E[l-1,m,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,(t+2)(t+1)G_y^A[l-1,m,\tilde{l},\tilde{m},t+2,u,v] \nonumber \\&\quad +\,(u+2)(u+1)G_y^A[l-1,m,\tilde{l},\tilde{m},t,u+2,v] \nonumber \\&\quad +\,(v+2)(v+1)G_y^A[l-1,m,\tilde{l},\tilde{m},t,u,v+2] \bigg \} \end{aligned}$$
(23)

1.4.2 B.4.2 Derivative in z

$$\begin{aligned}&G_z^A[l+1,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&=\frac{(2l+1)}{(l- |m |+1)} \bigg \{ \frac{1}{2\gamma }G_z^A[l,m,\tilde{l},\tilde{m},t,u,v-1] \nonumber \\&\quad -\,E[l,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,(P_z-A_z)G_z^A[l,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,(v+1)G_z^A[l,m,\tilde{l},\tilde{m},t,u,v+1] \bigg \} \nonumber \\&\quad -\,\frac{(l+|m |)}{(l- |m |+1)} \bigg \{ \frac{1}{(2\gamma )^2}\Big ( G_z^A[l-1,m,\tilde{l},\tilde{m},t-2,u,v] \nonumber \\&\quad +\,G_z^A[l-1,m,\tilde{l},\tilde{m},t,u-2,v] \nonumber \\&\quad +\,G_z^A[l-1,m,\tilde{l},\tilde{m},t,u,v-2] \Big ) \nonumber \\&\quad +\,\frac{1}{\gamma } \Big ( (P_x-A_x)G_z^A[l-1,m,\tilde{l},\tilde{m},t-1,u,v] \nonumber \\&\quad -\, E[l-1,m,\tilde{l},\tilde{m},t,u,v-1] \nonumber \\&\quad +\,(P_y-A_y)G_z^A[l-1,m,\tilde{l},\tilde{m},t,u-1,v] \nonumber \\&\quad +\,(P_z-A_z)G_z^A[l-1,m,\tilde{l},\tilde{m},t,u,v-1]\Big ) \nonumber \\&\quad +\,\Big ( |\mathbf P -\mathbf A |^2+\frac{1}{\gamma }\big ( t+u+v+\frac{3}{2} \big ) \Big ) \nonumber \\&\quad \times G_z^A[l-1,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad -\,2(P_z-A_z)E[l-1,m,\tilde{l},\tilde{m},t,u,v] \nonumber \\&\quad +\,2(t+1)(P_x-A_x)G_z^A[l-1,m,\tilde{l},\tilde{m},t+1,u,v] \nonumber \\&\quad +\,2(u+1)(P_y-A_y)G_z^A[l-1,m,\tilde{l},\tilde{m},t,u+1,v] \nonumber \\&\quad +\,2(v+1)(P_z-A_z)G_z^A[l-1,m,\tilde{l},\tilde{m},t,u,v+1] \nonumber \\&\quad -\,2(v+1)E[l-1,m,\tilde{l},\tilde{m},t,u,v+1] \nonumber \\&\quad +\,(t+2)(t+1)G_z^A[l-1,m,\tilde{l},\tilde{m},t+2,u,v] \nonumber \\&\quad +\,(u+2)(u+1)G_z^A[l-1,m,\tilde{l},\tilde{m},t,u+2,v] \nonumber \\&\quad +\,(v+2)(v+1)G_z^A[l-1,m,\tilde{l},\tilde{m},t,u,v+2] \bigg \} \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desmarais, J.K., Erba, A. & Dovesi, R. Generalization of the periodic LCAO approach in the CRYSTAL code to g-type orbitals. Theor Chem Acc 137, 28 (2018). https://doi.org/10.1007/s00214-018-2200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2200-9

Keywords

Navigation