Skip to main content
Log in

Segmented all-electron basis sets of triple zeta quality for the lanthanides: application to structure calculations of lanthanide monoxides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nonrelativistic and relativistic (Douglas-Kroll-Hess, DKH) segmented all-electron Gaussian basis sets of valence triple zeta quality plus polarization functions (TZP) for the lanthanides were developed. As some atomic and molecular properties depend on a good description of the electrons far from the nuclei, these basis sets are augmented with diffuse functions, giving rise to the augmented TZP (ATZP) and ATZP-DKH basis sets. At the DKH level of theory, the B3LYP hybrid functional in conjunction with the TZP-DKH basis set were used to calculate the atomic charges and valence orbital populations of the lanthanide and oxygen atoms, the bond lengths, and the equilibrium dissociation energies of lanthanide monoxides. The DKH-B3LYP/ATZP-DKH polarizability of Yb and the DKH-M06/TZP-DKH first ionization energies of the lanthanides are also reported. Compared with the values obtained with a larger all-electron basis set, and theoretical and experimental data found in the literature, data obtained by our compact basis sets are verified to be accurate and reliable. Unlike effective core potential valence basis sets, our basis sets can also be employed in molecular property calculations that involve the simultaneous treatment of core and valence electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakamoto M, Manseki K, Okawa H (2001) d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord Chem Rev 219–221:379–414

    Article  Google Scholar 

  2. Bunzli JC, Piguet C (2002) Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem Rev 102:1897–1928

    Article  PubMed  Google Scholar 

  3. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357–2368

    Article  CAS  PubMed  Google Scholar 

  4. Fricker SP (2006) The therapeutic application of lanthanides. Chem Soc Rev 35:524–533

    Article  CAS  PubMed  Google Scholar 

  5. Marjolin A, Gourlaouen C, Clavaguéra C et al (2014) Hydration gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics. J Mol Model 20:2471

    Article  PubMed  Google Scholar 

  6. Freire RO, Rocha GB, Simas AM (2006) Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations. J Mol Model 12:373–389

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Fang Y, Liu J et al (2015) Complexation behavior of Eu(III), Tb(III), tm(III), and am(III) with three 1,10-phenanthroline-type ligands: insights from density functional theory. J Mol Model 21:185

    Article  PubMed  Google Scholar 

  8. Salahub DR, Zerner MC (eds) 1989 The Challenge of d and f Electrons. Theory and computation, ACS symposium series, vol 394. American Chemical Society, Washington

  9. Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565

    Article  CAS  Google Scholar 

  10. Ross RB, Gayen S, Ermler WC (1994) Ab initio relativistic effective potentials with spin–orbit operators. V. Ce through Lu. J Chem Phys 100:8145–8155

    Article  CAS  Google Scholar 

  11. Cao X, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Mol Struct (THEOCHEM) 581:139–147

    Article  CAS  Google Scholar 

  12. Hülsen M, Weigand A, Dolg M (2009) Quasirelativistic energy-consistent 4f-in-core pseudopotentials for tetravalent lanthanide elements. Theor Chem Accounts 122:23–29

    Article  Google Scholar 

  13. Vyboishchikov SF, Sierraalta A, Frenking G (1997) Topological analysis of electron density distribution taken from a pseudopotential calculation. J Comput Chem 18:416–429

    Article  CAS  Google Scholar 

  14. Güell V, Luis JM, Solà M, Swart M (2008) Importance of the basis set for the spin-state energetics of Iron complexes. J Phys Chem A 112:6384–6391

    Article  PubMed  Google Scholar 

  15. Cirera J, Ruiz E (2008) Exchange coupling in CuIIGdIII dinuclear complexes: a theoretical perspective. C R Chim 11:1227–1234

    Article  CAS  Google Scholar 

  16. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (NY) 82:89–155

    Article  CAS  Google Scholar 

  17. Hess BA (1985) Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys Rev A 32:756–763

    Article  CAS  Google Scholar 

  18. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  19. Kellö V, Sadlej AJ (1998) Picture change and calculations of expectation values in approximate relativistic theories. Int J Quantum Chem 68:159–174

    Article  Google Scholar 

  20. Baerends EJ, Schwarz WHE, Schwerdtfeger P, Snijders JG (1990) Relativistic atomic orbital contractions and expansions: magnitudes and explanations. J Phys B: At Mol Phys 23:3225–3240

    Article  CAS  Google Scholar 

  21. Autschbach J, Peng D, Reiher M (2012) Two-component relativistic calculations of electric-field gradients using exact decoupling methods: spin−orbit and picture-change effects. J Chem Theory Comput 8:4239–4248

    Article  CAS  PubMed  Google Scholar 

  22. Te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

  23. Roos BO, Lindh R, Malmqvist P-Å, Veryazov V, Widmark P-O, Borin AC (2008) New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. J Phys Chem A 112:11431–11435

    Article  CAS  PubMed  Google Scholar 

  24. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation. J Chem Phys 115:4463–4472

    Article  CAS  Google Scholar 

  25. Nakajima T, Hirao K (2002) Accurate relativistic Gaussian basis sets determined by the third-order Douglas–Kroll approximation with a finite-nucleus model. J Chem Phys 116:8270–8275

    Article  CAS  Google Scholar 

  26. Sekiya M, Noro T, Miyoshi E, Osanai Y, Koga T (2006) Relativistic correlating basis sets for lanthanide atoms from Ce to Lu. J Comput Chem 27:463–470

    Article  CAS  PubMed  Google Scholar 

  27. Lu Q, Peterson KA (2016) Correlation consistent basis sets for lanthanides: the atoms La-Lu. J Chem Phys 145:054111

    Article  PubMed  Google Scholar 

  28. Gomes ASP, Dyall KG, Visscher L (2010) Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu. Theor Chem Accounts 127:369–381

    Article  CAS  Google Scholar 

  29. Pantazis DA, Neese F (2009) All-Electron scalar relativistic basis sets for the lanthanides. J Chem Theory Comput 5:2229–2238

    Article  CAS  PubMed  Google Scholar 

  30. Dolg M (2011) Segmented contracted Douglas–Kroll–Hess adapted basis sets for lanthanides. J Chem Theory Comput 7:3131–3142

    Article  CAS  PubMed  Google Scholar 

  31. Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954

    Article  CAS  Google Scholar 

  32. Machado SF, Camiletti GG, Canal Neto A, Jorge FE, Jorge RS (2009) Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: application in DFT and CCSD(T) calculations of molecular properties. Mol Phys 107:1713–1727

    Article  CAS  Google Scholar 

  33. Campos CT, Jorge FE (2013) Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations. Mol Phys 111:167–173

    Article  CAS  Google Scholar 

  34. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130:064108

    Article  CAS  PubMed  Google Scholar 

  35. Martins LSC, Jorge FE, Machado SF (2015) All-electron segmented contraction basis sets of triple zeta valence quality for the fifth-row elements. Mol Phys 113:3578–3586

    Article  CAS  Google Scholar 

  36. Campos CT, de Oliveira AZ, Ferreira IB, Jorge FE, Martins LSC (2017) Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac. Chem Phys Lett 675:1–5

    Article  CAS  Google Scholar 

  37. Fantin PA, Barbieri PL, Canal Neto A, Jorge FE (2007) Augmented Gaussian basis sets of triple and quadruple zeta valence quality for the atoms H and from li to Ar: applications in HF, MP2, and DFT calculations of molecular dipole moment and dipole (hyper)polarizability. J Mol Struct (THEOCHEM) 810:103–111

    Article  CAS  Google Scholar 

  38. Camiletti GG, Canal Neto A, Jorge FE, Machado SF (2009) Augmented Gaussian basis sets of double and triple zeta valence qualities for the atoms K and Sc-Kr: applications in HF, MP2, and DFT calculations of molecular electric properties. J Mol Struct (THEOCHEM) 910:122–125

    Article  CAS  Google Scholar 

  39. Martins LSC, de Souza FAL, Ceolin GA, Jorge FE, de Berrêdo RC, Campos CT (2013) Augmented Gaussian basis sets for the elements K, Sc-Kr, Rb, and Y-Xe: application in HF, MP2, and DFT calculations of molecular electric properties. Compt Theor Chem 1013:62–69

  40. Campos CT, Jorge FE, Alves JMA (2012) XZP+1d and XZP+1d-DKH basis sets for second-row elements: application to CCSD(T) zero-point vibrational energy and atomization energy calculations. J Mol Model 18:4081–4088

    Article  CAS  PubMed  Google Scholar 

  41. Antusek A, Sulka M (2016) Ab initio calculations of NMR shielding of Sc3+, Y3+ and La3+ ions in the water solution and 45Sc, 89Y, 138La and 139La nuclear magnetic dipole moments. Chem Phys Lett 660:127–131

    Article  CAS  Google Scholar 

  42. Jorge FE, Venâncio JRC (2018) Structure, stability, catalytic activity, and polarizabilities of small iridium clusters. Chin Phys B 27:063102

    Article  Google Scholar 

  43. Novikov AS, Ivanov DM, Avdontceva MS, Kukushkin VY (2017) Diiodomethane as a halogen bond donor toward metal-bound halides. Cryst Eng Comm 19:2517–2525

    Article  CAS  Google Scholar 

  44. Galembeck SE, Caramori GF, Misturini A, Garcia LC, Orenha RP (2017) Metal–ligand bonding situation in ruthenophanes containing mMultibridged cyclophanes. Organometallics 36:3465–3470

    Article  CAS  Google Scholar 

  45. Zhang Y, Miao H, Liu L, Zhang X, King RB (2017) Binuclear chromium carbonyl complexes of the highly basic small bite bidentate diphosphine bis(dimethylphosphino)methane. Polyhedron 138:194–205

    Article  CAS  Google Scholar 

  46. Chakravorty SJ, Corongiu G, Flores JR, Sonnad V, Clementi E, Carravetta V, Cacelli I (1989) Modern techniques in computational chemistry MOTECC-89. ESCOM, Leiden

    Google Scholar 

  47. De Castro EVR, Jorge FE, Pinheiro JC (1999) Accurate Gaussian basis sets for second-row atoms and ions generated with the improved generator coordinate Hartree–Fock method. Chem Phys 243:1–7

    Article  Google Scholar 

  48. Frisch MJ et al (2009) GAUSSIAN 09, revision A.02. GAUSSIAN Inc., Wallingford CT

    Google Scholar 

  49. De Jong WA, Harrison RJ, Dixon DA (2001) Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J Chem Phys 114:48–53

    Article  Google Scholar 

  50. Brummelhuis R, Siedentop H Stockmeyer E 2002The ground-state energy of relativistic one-electron atoms according to Jansen and Hess. Doc Math 7:167–182

  51. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  54. Zhao Y, Truhlar DG (2006) The M06 suite of density Functionals for Main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new Functionals and systematic testing of four M06 Functionals and twelve other Functionals. Theor Chem Accounts 120:215–241

    Article  Google Scholar 

  55. Linstrom PJ, Mallard WG (eds) (2005) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg

  56. Wu ZJ, Guan W, Meng J, Su ZM (2007) Density functional studies of diatomic LaO to LuO. J Clust Sci 18:444–458

    Article  CAS  Google Scholar 

  57. Wang SG, Schwarz WHE (1995) Lanthanide Diatomics and lanthanide contractions. J Phys Chem 99:11687–11695

    Article  CAS  Google Scholar 

  58. Xu W, Ji W-X, Wang S-G (2015) The electronic configurations of LnX (Ln = La–Eu, X = O, S, Se, Te): A FON–DFT investigation. Compt Theor Chem 1068:81–87

    Article  CAS  Google Scholar 

  59. Ramakrishnan R, Matveev AV, Rosch N (2009) The DFT + U method in the linear combination of Gaussian-type orbitals framework: role of 4f orbitals in the bonding of LuF3. Chem Phys Lett 468:158–161

    Article  CAS  Google Scholar 

  60. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, constants of diatomic molecules, vol IV. Van Nostrand Reinhold, New York

  61. Shenyavskaya EA, Bernard A, Vergès J (2003) High resolution study of near-infrared emission spectra of 142NdO. J Mol Spectrosc 222:240–247

    Article  CAS  Google Scholar 

  62. Chandrasekharaiah MS, Gingerich KA (1989) In: Gschniedner Jr KA, Erying L (eds) Handbook on the Chemistry and Physics of Rare Earths, vol 12, Chapter 86. Elsevier, Amsterdam

  63. Haire RG (1994) High-temperature vaporization of transplutonium oxides. J Alloys Compd 213/214:185–190

    Article  CAS  Google Scholar 

  64. Dulick M, Murad E, Barrow RF (1986) Thermochemical properties of the rare earth monoxides. J Chem Phys 85:385–390

    Article  CAS  Google Scholar 

  65. Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubský D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E (2014) The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides. J Phys Chem Ref Data 43:013101

    Article  Google Scholar 

  66. Kovács A, Konings RJM, Szieberth D, Krámos B (2014) Study of the an-cl bond contraction in actinide trichlorides. Struct Chem 25:991–996

    Article  Google Scholar 

  67. Kovács A, Konings RJM (2004) Structure and vibrations of lanthanide Trihalides: an assessment of experimental and theoretical data. J Phys Chem Ref Data 33:377–404

    Article  Google Scholar 

  68. Thierfelder C, Schwerdtfeger P (2009) Relativistic couple-cluster calculations. Phys Rev A 79:032512

    Article  Google Scholar 

  69. De Oliveira AZ, Campos CT, Jorge FE, Ferreira IB, Fantin PA (2018) All-electron triple zeta basis sets for the actinides. Compt Theor Chem 1135:28–33

Download references

Acknowledgments

We would like to acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (Brazilian Agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Jorge.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.Z., Ferreira, I.B., Campos, C.T. et al. Segmented all-electron basis sets of triple zeta quality for the lanthanides: application to structure calculations of lanthanide monoxides. J Mol Model 25, 38 (2019). https://doi.org/10.1007/s00894-019-3924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3924-8

Keywords

Navigation