Skip to main content

Advertisement

Log in

Effectiveness of coenzyme Q10 on learning and memory and synaptic plasticity impairment in an aged Aβ-induced rat model of Alzheimer’s disease: a behavioral, biochemical, and electrophysiological study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Aging is the major risk factor for Alzheimer’s disease (AD), and cognitive and memory impairments are common among the elderly. Interestingly, coenzyme Q10 (Q10) levels decline in the brain of aging animals. Q10 is a substantial antioxidant substance, which has an important role in the mitochondria.

Objective

We assessed the possible effects of Q10 on learning and memory and synaptic plasticity in aged β-amyloid (Aβ)-induced AD rats.

Methods

In this study, 40 Wistar rats (24–36 months old; 360–450 g) were randomly assigned to four groups (n = 10 rats/group)—group I: control, group II: Aβ, group III: Q10; 50 mg/kg, and group IV: Q10+Aβ. Q10 was administered orally by gavage daily for 4 weeks before the Aβ injection. The cognitive function and learning and memory of the rats were measured by the novel object recognition (NOR), Morris water maze (MWM), and passive avoidance learning (PAL) tests. Finally, malondialdehyde (MDA), total antioxidant capacity (TAC), total thiol group (TTG), and total oxidant status (TOS) were measured.

Results

Q10 improved the Aβ-related decrease in the discrimination index in the NOR test, spatial learning and memory in the MWM test, passive avoidance learning and memory in the PAL test, and long-term potentiation (LTP) impairment in the hippocampal PP-DG pathway in aged rats. In addition, Aβ injection significantly increased serum MDA and TOS levels. Q10, however, significantly reversed these parameters and also increased TAC and TTG levels in the Aβ+Q10 group.

Conclusions

Our experimental findings suggest that Q10 supplementation can suppress the progression of neurodegeneration that otherwise impairs learning and memory and reduces synaptic plasticity in our experimental animals. Therefore, similar supplemental Q10 treatment given to humans with AD could possibly provide them a better quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi N, Mirazi N, Komaki A, Safari S, Hosseini A (2021a) Vanillic acid attenuates amyloid β1-40-induced long-term potentiation deficit in male rats: an in vivo investigation. Neurol Res 1-8

  • Ahmadi N, Safari S, Mirazi N, Karimi SA, Komaki A (2021b) Effects of vanillic acid on Aβ1-40-induced oxidative stress and learning and memory deficit in male rats. Brain Res Bull 170:264–273

    Article  CAS  PubMed  Google Scholar 

  • Akalιn FA, Baltacιoğlu E, Alver A, Karabulut E (2007) Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clin Periodontol 34:558–565

    Article  Google Scholar 

  • Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  CAS  PubMed  Google Scholar 

  • Asadbegi M, Komaki A, Salehi I, Yaghmaei P, Ebrahim-Habibi A, Shahidi S, Sarihi A, Asl SS, Golipoor Z (2018) Effects of thymol on amyloid-β-induced impairments in hippocampal synaptic plasticity in rats fed a high-fat diet. Brain Res Bull 137:338–350

    Article  CAS  PubMed  Google Scholar 

  • Asadbegi M, Yaghmaei P, Salehi I, Ebrahim-Habibi A, Komaki A (2016) Neuroprotective effects of metformin against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Res Bull 121:178–185

    Article  CAS  PubMed  Google Scholar 

  • Asadbegi M, Yaghmaei P, Salehi I, Komaki A, Ebrahim-Habibi A (2017) Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet-fed rats. Metab Brain Dis 32:827–839

    Article  CAS  PubMed  Google Scholar 

  • Aslan R, Kutlu R, Civi S, Tasyurek E (2014) The correlation of the total antioxidant status (TAS), total oxidant status (TOS) and paraoxonase activity (PON1) with smoking. Clin Biochem 47:393–397

    Article  CAS  PubMed  Google Scholar 

  • Baazaoui N, Iqbal K (2017) Prevention of dendritic and synaptic deficits and cognitive impairment with a neurotrophic compound. Alzheimers Res Ther 9:1–15

    Article  Google Scholar 

  • Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentz K, Molcanyi M, Schneider A, Riess P, Maegele M, Bosche B, Hampl JA, Hescheler J, Patz S, Schäfer U (2010) Extract derived from rat brains in the acute phase following traumatic brain injury impairs survival of undifferentiated stem cells and induces rapid differentiation of surviving cells. Cell Physiol Biochem 26:821–830

    Article  CAS  PubMed  Google Scholar 

  • Benzie IF, Strain J (1999) [2] Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  • Berr C, Balansard B, Arnaud J, Roussel AM, Alpérovitch A, Group ES (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Bisagno V, Grillo CA, Piroli GG, Giraldo P, McEwen B, Luine VN (2004) Chronic stress alters amphetamine effects on behavior and synaptophysin levels in female rats. Pharmacol Biochem Behav 78:541–550

    Article  CAS  PubMed  Google Scholar 

  • Blair K, Geraci M, Devido J, McCaffrey D, Chen G, Vythilingam M, Ng P, Hollon N, Jones M, Blair R (2008) Neural response to self-and other referential praise and criticism in generalized social phobia. Arch Gen Psychiatry 65:1176–1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosche B, Mergenthaler P, Doeppner TR, Hescheler J, Molcanyi M (2020) Complex clearance mechanisms after intraventricular hemorrhage and rt-PA treatment—a review on clinical trials. Transl Stroke Res 11:337–344

    Article  PubMed  Google Scholar 

  • Bouayed J, Bohn T (2010) Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3:228–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732

    Article  PubMed  Google Scholar 

  • Clippingdale AB, Wade JD, Barrow CJ (2001) The amyloid-β peptide and its role in Alzheimer’s disease. J Pept Sci 7:227–249

    Article  CAS  PubMed  Google Scholar 

  • Cohen SJ, Stackman RW Jr (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117

    Article  PubMed  Google Scholar 

  • Cummings JL (2000) The role of cholinergic agents in the management of behavioural disturbances in Alzheimer’s disease. Int J Neuropsychopharmacol 3:S21–S29

    Article  Google Scholar 

  • Drews E, Schneider M, Koch M (2005) Effects of the cannabinoid receptor agonist WIN 55,212-2 on operant behavior and locomotor activity in rats. Pharmacol Biochem Behav 80:145–150

    Article  CAS  PubMed  Google Scholar 

  • Dumont M, Kipiani K, Yu F, Wille E, Katz M, Calingasan NY, Gouras GK, Lin MT, Beal MF (2011) Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 27:211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadi M, Govitrapong P, Sharma S, Muralikrishnan D, Shavali S, Pellett L, Schafer R, Albano C, Eken J (2001) Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Neurosignals 10:224–253

    Article  CAS  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Etaee F, Asadbegi M, Taslimi Z, Shahidi S, Sarihi A, Asl SS, Komaki A (2017) The effects of methamphetamine and buprenorphine, and their interaction on anxiety-like behavior and locomotion in male rats. Neurosci Lett 655:172–178

    Article  CAS  PubMed  Google Scholar 

  • Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    Article  CAS  PubMed  Google Scholar 

  • Flint BM (2002) Coenzyme Q 10 as a possible treatment for neurodegenerative diseases. Free Radic Res 36:455–460

    Article  Google Scholar 

  • Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S (2001) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 928:168–175

    Article  CAS  PubMed  Google Scholar 

  • Ganji A, Salehi I, Nazari M, Taheri M, Komaki A (2017) Effects of Hypericum scabrum extract on learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet. Metab Brain Dis 32:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, Haroutunian V, Zhang H, Park L, Shi Q, Lesser M, Mohs R, Sheu RKF, Blass J (2000) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann Neurol 48:297–303

    Article  CAS  PubMed  Google Scholar 

  • Gold PE (2004) Coordination of multiple memory systems. Neurobiol Learn Mem 82:230–242

    Article  PubMed  Google Scholar 

  • Haupt M, Zechmeister B, Bosche B, Lieschke S, Zheng X, Zhang L, Venkataramani V, Jin F, Hein K, Weber MS (2020) Lithium enhances post-stroke blood-brain barrier integrity, activates the MAPK/ERK1/2 pathway and alters immune cell migration in mice. Neuropharmacology 181:108357

    Article  CAS  PubMed  Google Scholar 

  • Hu M-L (1994) [41] Measurement of protein thiol groups and glutathione in plasma. In: Methods in enzymology. Elsevier, pp 380–385

    Google Scholar 

  • Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171:9–16

    Article  CAS  PubMed  Google Scholar 

  • Karimi SA, Salehi I, Shykhi T, Zare S, Komaki A (2019) Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav Brain Res 359:630–638

    Article  PubMed  Google Scholar 

  • Karimi SA, Salehi I, Taheri M, Faraji N, Komaki A (2020) Effects of regular exercise on diabetes-induced memory deficits and biochemical parameters in male rats. J Mol Neurosci 1-8

  • Komaki H, Faraji N, Komaki A, Shahidi S, Etaee F, Raoufi S, Mirzaei F (2019) Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 147:14–21

    Article  CAS  PubMed  Google Scholar 

  • Komaki H, Saadat F, Shahidi S, Sarihi A, Hasanein P, Komaki A (2017) The interactive role of CB1 receptors and L-type calcium channels in hippocampal long-term potentiation in rats. Brain Res Bull 131:168–175

    Article  CAS  PubMed  Google Scholar 

  • Lee B-J, Huang Y-C, Chen S-J, Lin P-T (2012) Effects of coenzyme Q10 supplementation on inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, and homocysteine) in patients with coronary artery disease. Nutrition 28:767–772

    Article  CAS  PubMed  Google Scholar 

  • Lee B-J, Tseng Y-F, Yen C-H, Lin P-T (2013) Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary artery disease patients during statins therapy: a randomized, placebo-controlled trial. Nutr J 12:1–9

    Article  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci 91:12243–12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar A, Nirwane A, Kamble R (2014) New evidences of neurotoxicity of aroclor 1254 in mice brain: potential of coenzyme q10 in abating the detrimental outcomes. Environ Health Toxicol 29

  • Maren S, Baudry M (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol Learn Mem 63:1–18

    Article  CAS  PubMed  Google Scholar 

  • Marshe VS, Pira S, Mantere O, Bosche B, Looper KJ, Herrmann N, Mueller DJ, Rej S (2017) C-reactive protein and cardiovascular risk in bipolar disorder patients: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry 79:442–451

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  • Matteo V, Esposito E (2003) Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 2:95–107

    Article  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci 95:8892–8897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S (1999) Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann N Y Acad Sci 893:154–175

    Article  CAS  PubMed  Google Scholar 

  • Mcdonald SR, Sohal RS, Forster MJ (2005) Concurrent administration of coenzyme Q10 and α-tocopherol improves learning in aged mice. Free Radic Biol Med 38:729–736

    Article  CAS  PubMed  Google Scholar 

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misonou H, Morishima-Kawashima M, Ihara Y (2000) Oxidative stress induces intracellular accumulation of amyloid β-protein (Aβ) in human neuroblastoma cells. Biochemistry 39:6951–6959

    Article  CAS  PubMed  Google Scholar 

  • Mohmmad Abdul H, Sultana R, Keller JN, St. Clair DK, Markesbery WR, Butterfield DA. (2006) Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid β-peptide (1–42), H2O2 and kainic acid: implications for Alzheimer’ disease. J Neurochem 96:1322–1335

    Article  PubMed  Google Scholar 

  • Monsef A, Shahidi S, Komaki A (2019) Influence of chronic coenzyme Q10 supplementation on cognitive function, learning, and memory in healthy and diabetic middle-aged rats. Neuropsychobiology 77:92–100

    Article  PubMed  Google Scholar 

  • Muthukumaran K, Kanwar A, Vegh C, Marginean A, Elliott A, Guilbeault N, Badour A, Sikorska M, Cohen J, Pandey S (2018) Ubisol-Q 10 (a nanomicellar water-soluble formulation of CoQ 10) treatment inhibits Alzheimer-type behavioral and pathological symptoms in a double transgenic mouse (TgAPEswe, PSEN1dE9) model of Alzheimer’s disease. J Alzheimers Dis 61:221–236

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaran K, Leahy S, Harrison K, Sikorska M, Sandhu JK, Cohen J, Keshan C, Lopatin D, Miller H, Borowy-Borowski H (2014) Orally delivered water soluble Coenzyme Q 10 (Ubisol-Q 10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson’s disease. BMC Neurosci 15:1–11

    Article  CAS  Google Scholar 

  • Navas P, Villalba JM, de Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 7:S34–S40

    Article  CAS  PubMed  Google Scholar 

  • Nazari M, Komaki A, Karamian R, Shahidi S, Sarihi A, Asadbegi M (2016) The interactive role of CB1 and GABAB receptors in hippocampal synaptic plasticity in rats. Brain Res Bull 120:123–130

    Article  CAS  PubMed  Google Scholar 

  • Omidi G, Karimi SA, Rezvani-Kamran A, Monsef A, Shahidi S, Komaki A (2019) Effect of coenzyme Q10 supplementation on diabetes induced memory deficits in rats. Metab Brain Dis 34:833–840

    Article  CAS  PubMed  Google Scholar 

  • Omidi G, Karimi SA, Shahidi S, Faraji N, Komaki A (2020a) Coenzyme Q10 supplementation reverses diabetes-related impairments in long-term potentiation induction in hippocampal dentate gyrus granular cells: an in vivo study. Brain Res 1726:146475

    Article  CAS  PubMed  Google Scholar 

  • Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, Komaki A (2020b) Effects of Hypericum scabrum extract on dentate gyrus synaptic plasticity in high fat diet-fed rats. J Physiol Sci 70:1–8

    Article  Google Scholar 

  • Papucci L, Schiavone N, Witort E, Donnini M, Lapucci A, Tempestini A, Formigli L, Zecchi-Orlandini S, Orlandini G, Carella G (2003) Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 278:28220–28228

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202

    Article  CAS  PubMed  Google Scholar 

  • Placanica L, Tarassishin L, Yang G, Peethumnongsin E, Kim S-H, Zheng H, Sisodia SS, Li Y-M (2009) Pen2 and presenilin-1 modulate the dynamic equilibrium of presenilin-1 and presenilin-2 γ-secretase complexes. J Biol Chem 284:2967–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC, Initiative AsDN (2011) Amygdala atrophy is prominent in early Alzheimer’ disease and relates to symptom severity. Psychiatry Res Neuroimaging 194:7–13

    Article  Google Scholar 

  • Prasad KN, Bondy SC (2014) Inhibition of early upstream events in prodromal Alzheimer’s disease by use of targeted antioxidants. Curr Aging Sci 7:77–90

    Article  CAS  PubMed  Google Scholar 

  • Ramirez G, Rey S, von Bernhardi R (2008) Proinflammatory stimuli are needed for induction of microglial cell-mediated AβPP 244–C and Aβ-neurotoxicity in hippocampal cultures. J Alzheimers Dis 15:45–59

    Article  CAS  PubMed  Google Scholar 

  • Rasoolijazi H, Azad N, Joghataei M, Kerdari M, Nikbakht F, Soleimani M (2013) The protective role of carnosic acid against beta-amyloid toxicity in rats. Scientific World Journal 2013

  • Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I, Nedergaard M, Kahle KT (2020) Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med 26:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich JB, Rasmusson D, Folstein M, Carson K, Kawas C, Brandt J (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 45:51–55

    Article  CAS  PubMed  Google Scholar 

  • Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, Shahidi S, Sarihi A (2015) Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res 1629:270–281

    Article  CAS  PubMed  Google Scholar 

  • Sandhir R, Sethi N, Aggarwal A, Khera A (2014) Coenzyme Q10 treatment ameliorates cognitive deficits by modulating mitochondrial functions in surgically induced menopause. Neurochem Int 74:16–23

    Article  CAS  PubMed  Google Scholar 

  • Sarowar T, Grabrucker S, Boeckers TM, Grabrucker AM (2017) Object phobia and altered RhoA signaling in amygdala of mice lacking RICH2. Front Mol Neurosci 10:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Shekarian M, Komaki A, Shahidi S, Sarihi A, Salehi I, Raoufi S (2020) The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav Brain Res 383:112512

    Article  CAS  PubMed  Google Scholar 

  • Shoffner JM, Brown MD, Torroni A, Lott MT, Cabell MF, Mirra SS, Beal MF, Yang C-C, Gearing M, Salvo R (1993) Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 17:171–184

    Article  CAS  PubMed  Google Scholar 

  • Sikorska M, Lanthier P, Miller H, Beyers M, Sodja C, Zurakowski B, Gangaraju S, Pandey S, Sandhu JK (2014) Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson’s disease. Neurobiol Aging 35:2329–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva I, Silva J, Ferreira R, Trigo D (2021) Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract 3:1–9

    Article  Google Scholar 

  • Sultana R, Perluigi M, Butterfield DA (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8:2021–2037

    Article  CAS  PubMed  Google Scholar 

  • Sumien N, Heinrich KR, Shetty RA, Sohal RS, Forster MJ (2009) Prolonged intake of coenzyme Q10 impairs cognitive functions in mice. J Nutr 139:1926–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi L, Komaki A, Karamian R, Shahidi S, Sarihi A, Salehi I, Nikkhah A (2015) The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats. Eur J Pharmacol 757:68–73

    Article  CAS  PubMed  Google Scholar 

  • Terry RD, Davies P (1980) Dementia of the Alzheimer type. Annu Rev Neurosci 3:77–95

    Article  CAS  PubMed  Google Scholar 

  • Thorpe CM, Jacova C, Wilkie DM (2004) Some pitfalls in measuring memory in animals. Neurosci Biobehav Rev 28:711–718

    Article  PubMed  Google Scholar 

  • Tso MK, Turgeon P, Bosche B, Lee CK, Nie T, D’Abbondanza J, Ai J, Marsden PA, Macdonald RL (2021) Gene expression profiling of brain endothelial cells after experimental subarachnoid haemorrhage. Sci Rep 11:1–16

    Article  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateshappa C, Harish G, Mahadevan A, Bharath MS, Shankar S (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37:1601–1614

    Article  CAS  PubMed  Google Scholar 

  • Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532

    Article  PubMed  Google Scholar 

  • Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U (2018) Oxidant/antioxidant imbalance in Alzheimer’s disease: therapeutic and diagnostic prospects. Oxid Med Cell Longev 2018

  • Xie H, Hou S, Jiang J, Sekutowicz M, Kelly J, Bacskai BJ (2013) Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc Natl Acad Sci 110:7904–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T (2007) Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170:680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhang Y, Xu H, Luo X, Yu J, Liu J, Chang RC-C (2016) Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem 16:858–866

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang J-Z (2017) From structure to behavior in basolateral amygdala-hippocampus circuits. Front Neural Circuits 11:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Yankner BA, Mesulam M-M (1991) β-amyloid and the pathogenesis of Alzheimer's disease. N Engl J Med 325:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Young AJ, Johnson S, Steffens DC, Doraiswamy PM (2007) Coenzyme Q10: a review of its promise as a neuroprotectant. CNS Spectr 12:62–68

    Article  PubMed  Google Scholar 

  • Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A (2016) Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 157:19–24

    Article  CAS  PubMed  Google Scholar 

  • Zarrinkalam E, Ranjbar K, Salehi I, Kheiripour N, Komaki A (2018) Resistance training and hawthorn extract ameliorate cognitive deficits in streptozotocin-induced diabetic rats. Biomed Pharmacother 97:503–510

    Article  PubMed  Google Scholar 

  • Zhang S-y, Yang K-l, Zeng L-t, Wu X-h, Huang H-y (2018) Effectiveness of coenzyme Q10 supplementation for type 2 diabetes mellitus: a systematic review and meta-analysis. Int J Endocrinol 2018

  • Zola-Morgan S, Squire LR, Clower RP, Alvarez-Royo P (1991) Independence of memory functions and emotional behavior: separate contributions of the hippocampal formation and the amygdala. Hippocampus 1:207–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (Grant No.: 9412257459) of Hamadan University of Medical Sciences, Iran. This Center supported us in study design, in the collection, analysis, and interpretation of data. The authors are grateful to the staff of the Neurophysiology Research Center, Hamadan University of Medical Sciences for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Komaki.

Ethics declarations

All of the experiments and animal care methods were confirmed by the Veterinary Ethics Board of the Hamadan University of Medical Science and carried out according to the Guidelines of the National Institutes of Health on the principles of laboratory animal care (NIH Publication 80-23, 1996).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadbegi, M., Komaki, H., Faraji, N. et al. Effectiveness of coenzyme Q10 on learning and memory and synaptic plasticity impairment in an aged Aβ-induced rat model of Alzheimer’s disease: a behavioral, biochemical, and electrophysiological study. Psychopharmacology 240, 951–967 (2023). https://doi.org/10.1007/s00213-023-06338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06338-2

Keywords

Navigation