Skip to main content
Log in

Effects of Hypericum scabrum extract on learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

A high-fat diet (HFD) causes deficits in learning and memory by increasing oxidative stress. Antioxidants are known to improve learning and memory. Since Hypericum scabrum (H. scabrum) extract is rich in antioxidants, the aim of this study was to investigate the effects of the administration of H. scabrum extract on passive avoidance learning (PAL), novel object recognition (NOR), and locomotor activity in male rats on a HFD. Fifty-four male Wistar rats (weighing 220 ± 10 g) were divided into the following six groups: (1) Control (standard diet), (2) Ext100 (standard diet supplemented with 100 mg/kg extract once/day), (3) Ext300 (standard diet supplemented with 300 mg/kg extract once/day), (4) HFD (high-fat diet), (5) HFD + Ext100, and (6) HFD + Ext300. Rats in these groups were maintained on their respective diets for 3 months. In the PAL test, the step-through latencies in the retention test (STLr) were significantly higher in the HFD + extract group than in the HFD group. The time spent in the dark compartment (TDC) was significantly lesser and the time spent in exploring the novel object was significantly greater in the HFD + extract group than in the HFD group. In the HFD-fed rats, the activity of catalase had significantly decreased, and level of malondialdehyde had significantly increased; H. scabrum extract administration significantly reversed these changes. In conclusion, these results suggested that the administration of H. scabrum extract and its strong antioxidant properties enhanced learning and memory and reversed the memory impairment induced by chronic HFD consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Kadir NAA, Rahmat A, Jaafar HZ (2015) Protective effects of Tamarillo (Cyphomandra betacea) extract against high fat diet induced obesity in Sprague-Dawley rats. J Obes 2015:1–8

    Article  CAS  Google Scholar 

  • Adebiyi OE, Olopade FE, Olopade JO, Olayemi FO (2016) Behavioural studies on the ethanol leaf extract of Grewia Carpinifolia in Wistar rats. Afr Health Sci 16:339–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aghili T, Arshami J, Tahmasbi AM, Haghparast AR (2014) Effects of Hypericum perforatum extract on IgG titer, leukocytes subset and spleen index in rats. Avicenna J Phytomedicine 4:413

    Google Scholar 

  • Alzoubi KH, Khabour OF, Salah HA, Hasan Z (2013) Vitamin E prevents high-fat high-carbohydrates diet-induced memory impairment: the role of oxidative stress. Physiol Behav 119:72–78

    Article  CAS  PubMed  Google Scholar 

  • Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N (2012) Cardioprotective effects of metformin and vildagliptin in adult rats with insulin resistance induced by a high-fat diet. Endocrinology 153:3878–3885

    Article  CAS  PubMed  Google Scholar 

  • Asadbegi M, Yaghmaei P, Salehi I, Ebrahim-Habibi A, Komaki A (2016) Neuroprotective effects of metformin against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Res Bull 121:178–185

    Article  CAS  PubMed  Google Scholar 

  • Aslan AKD, Starr JM, Pattie A, Deary I (2015) Cognitive consequences of overweight and obesity in the ninth decade of life? Age Ageing 44:59–65

    Article  PubMed  Google Scholar 

  • Barzegar S, Komaki A, Shahidi S, Sarihi A, Mirazi N, Salehi I (2015) Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats. Pharmacol Biochem Behav 131:87–90

    Article  CAS  PubMed  Google Scholar 

  • Carney J, Starke-Reed P, Oliver C, Landum R, Cheng M, Wu J, Floyd R (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci 88:3633–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CËakir A, Duru M, Harmandar M, Ciriminna R, Passannanti S, Piozzi F (1997) Comparison of the volatile oils of Hypericum Scabrum L. Flavour Fragr J 12:285–287

    Article  Google Scholar 

  • Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, Siqueira IR, Netto CA (2012) Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem 97:90–96

    Article  CAS  PubMed  Google Scholar 

  • Charradi K, Elkahoui S, Limam F, Aouani E (2013) High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. J Physiol Sci 63:445–455

    Article  CAS  PubMed  Google Scholar 

  • CHIANG BN, PERLMAN LV, EPSTEIN FH (1969) Overweight and hypertension a review. Circulation 39:403–421

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    Article  CAS  PubMed  Google Scholar 

  • Cook N, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimzadeh M, Nabavi S, Nabavi S, Ahangar N (2013) Anticonvulsant activity of Hypericum Scabrum L.; possible mechanism involved. Eur Rev Med Pharmacol Sci 17:2141–2144

    CAS  PubMed  Google Scholar 

  • Elias M, Elias P, Sullivan L, Wolf P, D'agostino R (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes 27:260–268

    Article  CAS  Google Scholar 

  • Emami SR, Haghshenas R (2016) OPEN ACCESS: impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. J Exerc Nutr Biochem 20:29–35

    Article  Google Scholar 

  • Erdoğrul Ö, Azirak S, Tosyali C (2004) Antimicrobial activities of Hypericum Scabrum L. extracts. KSU J Sci Eng 7:38–42

    Google Scholar 

  • Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 9:e92193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE, Banks WA, Morley JE (2008) Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology 149:2628–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA (2001) Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med 161:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Fraga CG, Martino VS, Ferraro GE, Coussio JD, Boveris A (1987) Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem Pharmacol 36:717–720

    Article  CAS  PubMed  Google Scholar 

  • Gamboa-Gómez CI, Rocha-Guzmán NE, Gallegos-Infante JA, Moreno-Jiménez MR, Vázquez-Cabral BD, González-Laredo RF (2015) Plants with potential use on obesity and its complications. EXCLI J 14:809

    PubMed  PubMed Central  Google Scholar 

  • Ganji A, Salehi I, Sarihi A, Shahidi S, Komaki A (2017) Effects of Hypericum Scabrum extract on anxiety and oxidative stress biomarkers in rats fed a long-term high-fat diet. Metab Brain Dis 32(2):503–511. doi:10.1007/s11011-016-9940-9

  • Ge J-F, Xu Y-Y, Qin G, Cheng J-Q, Chen F-H (2016) Resveratrol ameliorates the anxiety-and depression-like behavior of subclinical hypothyroidism rat: possible involvement of the HPT axis, HPA axis, and Wnt/β-catenin pathway. Front Endocrinol 7:1–11

    Article  Google Scholar 

  • Ghasemi Pirbalouti A, Fatahi-Vanani M, Craker L, Shirmardi H (2014) Chemical composition and bioactivity of essential oils of Hypericum helianthemoides. Hypericum perforatum and Hypericum scabrum. Pharm Biol 52:175–181

    Article  CAS  PubMed  Google Scholar 

  • Gijtenbeek J, Van den Bent M, Vecht CJ (1999) Cyclosporine neurotoxicity: a review. J Neurol 246:339–346

    Article  CAS  PubMed  Google Scholar 

  • Gomar A, Hosseini A, Mirazi N (2014) Preventive effect of Rubus fruticosus on learning and memory impairment in an experimental model of diabetic neuropathy in male rats. PharmaNutrition 2:155–160

    Article  Google Scholar 

  • Granholm A-C, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K (2008) Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 14:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer's disease. J Alzheimers Dis 4:179–189

    Article  PubMed  Google Scholar 

  • Gupta M, Mazumder UK, Kumar TS, Gomathi P, Kumar RS (2004) Antioxidant and hepatoprotective effects of Bauhinia Racemosa against paracetamol and carbon tetrachloride induced liver damage in rats. Iran J Pharmacol Ther 3:12–20

    Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:S14–S22

    Article  Google Scholar 

  • Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5:e15497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Li Z, Zuo Y-X (2015) Nerve blockage attenuates postoperative inflammation in hippocampus of young rat model with surgical trauma. Mediat Inflamm 2015:1–7

    CAS  Google Scholar 

  • Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  CAS  PubMed  Google Scholar 

  • Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation 67:968–977

    Article  CAS  PubMed  Google Scholar 

  • Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, Chen CT, Liang KC, Ho IK, Yang WS (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity 18:463–469

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Numonov S, Bobakulov K, Qureshi MN, Zhao H, Aisa HA (2015) Phytochemical profiling and evaluation of pharmacological activities of Hypericum Scabrum L. Molecules 20:11257–11271

    Article  CAS  PubMed  Google Scholar 

  • Jikumaru M, Inoue M (2013) Pathophysiology of oxystress-induced tissue damage in cerebrovascular disease. Brain and Nerve= Shinkei Kenkyu No Shinpo 65:871–878

    CAS  PubMed  Google Scholar 

  • Jodayree S, Patterson ZR, MacKay H, Abizaid AB, Tsopmo A (2014) Blood and liver antioxidant capacity of mice fed high fat diet supplemented with digested oat bran proteins. Int J Food Sci Nutr Eng 4:9–14

    Google Scholar 

  • Johnson WC, Williford WO (2002) Benefits, morbidity, and mortality associated with long-term administration of oral anticoagulant therapy to patients with peripheral arterial bypass procedures: a prospective randomized study. J Vasc Surg 35:413–421

    Article  PubMed  Google Scholar 

  • Kannel WB, Gordon T, Castelli WP (1979) Obesity, lipids, and glucose intolerance. The Framingham Study. Am J Clin Nutr 32:1238–1245

    CAS  PubMed  Google Scholar 

  • Karimi SA, Salehi I, Komaki A, Sarihi A, Zarei M, Shahidi S (2013) Effect of high-fat diet and antioxidants on hippocampal long-term potentiation in rats: an in vivo study. Brain Res 1539:1–6

    Article  CAS  PubMed  Google Scholar 

  • Karimi SA, Komaki A, Salehi I, Sarihi A, Shahidi S (2015) Role of group II metabotropic glutamate receptors (mGluR2/3) blockade on long-term potentiation in the dentate gyrus region of hippocampus in rats fed with high-fat diet. Neurochem Res 40:811–817

    Article  CAS  PubMed  Google Scholar 

  • Khalili M, Jalali MR, Mirzaei-Azandaryani M (2012) Effect of hydroalcoholic extract of Hypericum perforatum L. leaves on ethylene glycol-induced kidney calculi in rats. Urology journal 9:472

    PubMed  Google Scholar 

  • Khan NA, Raine LB, Donovan SM, Hillman CH (2014) IV. The cognitive implications of obesity and nutrition in childhood. Monogr Soc Res Child Dev 79:51–71

    Article  PubMed  Google Scholar 

  • Khodamoradi N, Komaki A, Salehi I, Shahidi S, Sarihi A (2015) Effect of vitamin E on lead exposure-induced learning and memory impairment in rats. Physiol Behav 144:90–94

    Article  CAS  PubMed  Google Scholar 

  • Kim HG, Jeong HU, Park G, Kim H, Lim Y, Oh MS (2015) Mori folium and mori fructus mixture attenuates high-fat diet-induced cognitive deficits in mice. Evid Based Complement Alternat Med 2015. doi:10.1155/2015/379418

    Google Scholar 

  • Kızıl G, Toker Z, Özen HÇ, Aytekin C (2004) The antimicrobial activity of essential oils of Hypericum Scabrum, Hypericum scabroides and Hypericum triquetrifolium. Phytother Res 18:339–341

    Article  PubMed  Google Scholar 

  • Kızıl G, Kızıl M, Yavuz M, Emen S, Hakimoğlu F (2008) Antioxidant activities of ethanol extracts of Hypericum triquetrifolium. And Hypericum scabroides. Pharm Biol 46:231–242

    Article  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  • Komaki A, Hoseini F, Shahidi S, Baharlouei N (2015a) Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J Tradit Community Med. doi:10.1016/j.jtcme.2015.01.001

    Google Scholar 

  • Komaki A, Karimi SA, Salehi I, Sarihi A, Shahidi S, Zarei M (2015b) The treatment combination of vitamins E and C and astaxanthin prevents high-fat diet induced memory deficits in rats. Pharmacol Biochem Behav 131:98–103

    Article  CAS  PubMed  Google Scholar 

  • Kontush A (2001) Amyloid-β: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer’s disease. Free Radic Biol Med 31:1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, More SV, Han S-D, Choi J-Y, Choi D-K (2012) Promising therapeutics with natural bioactive compounds for improving learning and memory—a review of randomized trials. Molecules 17:10503–10539

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Jaggi AS, Sodhi RK, Singh N (2014) Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia. Naunyn Schmiedeberg's Arch Pharmacol 387:777–787

    Article  CAS  Google Scholar 

  • Li Y, Periwal V (2013) Synergy in free radical generation is blunted by high-fat diet induced alterations in skeletal muscle mitochondrial metabolism. Biophys J 104:1127–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  • Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam MHG, Roghani M, Maleki M (2016) Effect of Hypericum perforatum aqueous extracts on serum lipids, aminotransferases, and lipid peroxidation in Hyperlipidemic rats. Res Cardiovasc Med 5. doi:10.5812/cardiovascmed.31326

    Google Scholar 

  • Molteni R, Barnard R, Ying Z, Roberts C, Gomez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803–814

    Article  CAS  PubMed  Google Scholar 

  • Molteni R, Wu A, Vaynman S, Ying Z, Barnard R, Gomez-Pinilla F (2004) Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 123:429–440

    Article  CAS  PubMed  Google Scholar 

  • Moradkhani S, Salehi I, Abdolmaleki S, Komaki A (2015) Effect of Calendula officinalis hydroalcoholic extract on passive avoidance learning and memory in streptozotocin-induced diabetic rats. Anc Sci Life 34:157

    Google Scholar 

  • Moy GA, McNay EC (2013) Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol Behav 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H (2009) Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 284:14809–14818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DM, El-Serag HB (2010) The epidemiology of obesity. Gastroenterol Clin N Am 39:1–7

    Article  CAS  Google Scholar 

  • Noppa H (1980) Body weight change in relation to incidence of ischemic heart disease and change in risk factors for ischemic heart disease. Am J Epidemiol 111:693–704

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239

    Article  CAS  PubMed  Google Scholar 

  • Pathania S, Ramakrishnan SM, Bagler G (2015) Phytochemica: a platform to explore phytochemicals of medicinal plants. Database 2015:bav075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng C-H, Liu L-K, Chuang C-M, Chyau C-C, Huang C-N, Wang C-J (2011) Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J Agric Food Chem 59:2663–2671

    Article  CAS  PubMed  Google Scholar 

  • Pignol B, Etienne A, Crastes DPA, Deby C, Mencia-Huerta J, Braquet P (1988) Role of flavonoids in the oxygen-free radical modulation of the immune response. Prog Clin Biol Res 280:173

    CAS  PubMed  Google Scholar 

  • Pintana H, Sripetchwandee J, Supakul L, Apaijai N, Chattipakorn N, Chattipakorn S (2014) Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats. Appl Physiol Nutr Metab 39:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  PubMed  CAS  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  CAS  PubMed  Google Scholar 

  • Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, Shahidi S, Sarihi A (2015) Effects of vitamins E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res. doi:10.1016/j.brainres.2015.10.007

    PubMed  Google Scholar 

  • Sanwal M, Trevithick G (1982) In vivo effects of vitamin E on cataractogenesis in diabetic rats. Can J Ophtalmol 17:61–66

    Google Scholar 

  • Scaini G, Comim CM, Oliveira GM, Pasquali MA, Quevedo J, Gelain DP, Moreira JCF, Schuck PF, Ferreira GC, Bogo MR (2013) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36:721–730

    Article  CAS  PubMed  Google Scholar 

  • Selvi NMK, Sridhar MG, Swaminathan RP, Sripradha R (2015) Curcumin attenuates oxidative stress and activation of redox-sensitive kinases in high fructose-and high-fat-fed male Wistar rats. Sci Pharm 83:159

    Article  CAS  Google Scholar 

  • Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443

    Article  CAS  PubMed  Google Scholar 

  • Shahidi S, Komaki A, Mahmoodi M, Atrvash N, Ghodrati M (2008) Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res Bull 76:109–113

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Taliyan R (2014) Neuroprotective role of Indirubin-3′-monoxime, a GSKβ inhibitor in high fat diet induced cognitive impairment in mice. Biochem Biophys Res Commun 452:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Abilio V, Takatsu A, Kameda S, Grassl C, Chehin A, Medrano W, Calzavara M, Registro S, Andersen M (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46:895–903

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1502:139–144

    Article  CAS  Google Scholar 

  • Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Stranahan AM, Cutler RG, Button C, Telljohann R, Mattson MP (2011) Diet-induced elevations in serum cholesterol are associated with alterations in hippocampal lipid metabolism and increased oxidative stress. J Neurochem 118:611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon V, Gupta R (2005) Effect of Vitex negundo on oxidative stress. Indian J Pharm 37:38

    Article  Google Scholar 

  • Tota S, Goel R, Pachauri SD, Rajasekar N, Najmi AK, Hanif K, Nath C (2013) Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats. Psychopharmacology 226:357–369

    Article  CAS  PubMed  Google Scholar 

  • Unal EL, Mavi A, Kara AA, Cakir A, Şengül M, Yildirim A (2008) Antimicrobial and antioxidant activities of some plants used as remedies in Turkish traditional medicine. Pharm Biol 46:207–224

    Article  Google Scholar 

  • Underwood EL, Thompson LT (2016) High-fat diet impairs spatial memory and hippocampal intrinsic excitability and sex-dependently alters circulating insulin and hippocampal insulin sensitivity. Biol Sex Differ 7:1

    Article  CAS  Google Scholar 

  • Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrançois D, Virgili J, Planel E, Giguere Y (2014) Insulin reverses the high-fat diet–induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes 63:4291–4301

    Article  CAS  PubMed  Google Scholar 

  • Waldstein S, Katzel L (2006) Interactive relations of central versus total obesity and blood pressure to cognitive function. Int J Obes 30:201–207

    Article  CAS  Google Scholar 

  • Wang Y, Feng Y, Fu Q, Li L (2013) Panax notoginsenoside Rb1 ameliorates Alzheimer's disease by upregulating brain-derived neurotrophic factor and downregulating tau protein expression. Exp Ther Med 6:826–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim S-O, Hise TL, Keller JN, Ingram DK, Morrison CD, Bruce-Keller AJ (2009) Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 35:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widy-Tyszkiewicz E, Piechal A, Joniec I, Blecharz-Klin K (2002) Long term administration of Hypericum perforatum improves spatial learning and memory in the water maze. Biol Pharm Bull 25:1289–1294

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    Article  PubMed  Google Scholar 

  • Zainuddin MSA, Thuret S (2012) Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull 103:89–114

    Article  PubMed  Google Scholar 

  • Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A (2016) Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 157:19–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong F, Ren J, Driscoll MJ, Culver B (2005) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191:318–325

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu M, Sun H, Yin K (2016) Matrine improves cognitive impairment and modulates the balance of Th17/Treg cytokines in a rat model of Aβ1-42-induced Alzheimer's disease. Central-European J Immunol 40:411

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (Grant number: 94011852) of the Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Komaki.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, A., Salehi, I., Nazari, M. et al. Effects of Hypericum scabrum extract on learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet. Metab Brain Dis 32, 1255–1265 (2017). https://doi.org/10.1007/s11011-017-0022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0022-4

Keywords

Navigation