Skip to main content
Log in

Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

One theory for therapeutic effects of the lithium ion (Li+) in bipolar disorder is that myo-inositol, needed for phospholipase C-mediated signaling, is depleted by Li+-induced inhibition of inositolphosphate hydrolysis or of myo-inositol uptake, an effect demonstrated in cultured mouse astrocytes at high myo-inositol concentrations. In contrast, myo-inositol uptake is inhibited at low concentrations, reflecting that it occurs both by the high-affinity Na+-dependent myo-inositol transporter (SMIT) and the lower-affinity H+-dependent inositol transporter (HMIT). Increased intracellular pH (pHi) stimulates SMIT but inhibits HMIT, suggesting that the effect of Li+ could be caused by intracellular alkalinization. In this study, we therefore investigated Li+ effects on intracellular pH in astrocytes, measured by 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence.

Results

Chronic treatment with the therapeutically relevant Li+ concentration of 1 mM for 2 or 3 weeks increased pHi by ~0.10, whereas 0.5 mM was ineffective, and 2 mM caused a larger increase. The alkalinization resulted from acute stimulation of the Na+/H+ exchanger (NHE) by extracellular Li+, demonstrated after acid load with NH4Cl. In response to continuous stimulation, NHE1 mRNA was down-regulated, but protein was not.

Conclusions

Chronic treatment with pharmacologically relevant Li+ concentrations increases pHi in astrocytes, creating conditions for decreased uptake of high myo-inositol concentrations and increased uptake of low concentrations. The pharmacological relevance of this effect is supported by literature data suggesting brain acidosis in bipolar patients and by preliminary observations that carbamazepine and valproate also increase pHi in astrocytes. Stimulation of NHE1-stimulated sodium ion uptake might also trigger uptake of chloride ions and osmotically obliged water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aronson PS (1985) Properties of the renal Na+–H+ exchanger. Ann N Y Acad Sci 456:220–228

    Article  PubMed  CAS  Google Scholar 

  • Avila MY, Seidler RW, Stone RA, Civan MM (2002) Inhibitors of NHE-1 Na+/H+ exchange reduce mouse intraocular pressure. Invest Ophthalmol Vis Sci 43:1897–1902

    PubMed  Google Scholar 

  • Benos DJ, McPherson S, Hahn BH, Chaikin MA, Benveniste EN (1994) Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes. J Biol Chem 269:13811–13816

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59:411–419

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, De Weer P (1976) Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 67:91–112

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Hertz L (1996) Inhibition of noradrenaline stimulated increase in [Ca2+]i in cultured astrocytes by chronic treatment with a therapeutically relevant lithium concentration. Brain Res 711:245–248

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide–vasopressin-sensitive mechanism for volume regulation. Can J Physiol Pharmacol 70:S367–S373

    PubMed  CAS  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    PubMed  CAS  Google Scholar 

  • el-Marjou M, Montalescot V, Buzyn A, Geny B (2000) Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells. Leukemia 14:2118–2127

    Article  PubMed  CAS  Google Scholar 

  • Font C, Garía-Campos M, Hansen AJ, Siemkowicz E, Gjedde A (1982) Simultaneous diffusion of inositol and mannitol in the rat brain. Rev Esp Fisiol 38:317–319

    PubMed  CAS  Google Scholar 

  • Fukuda T, Kim DK, Chin MR, Hales CA, Bonventre JV (1999) Increased group IV cytosolic phospholipase A2 activity in lungs of sheep after smoke inhalation injury. Am J Physiol 277:L533–542

    PubMed  CAS  Google Scholar 

  • Grant RL, Acosta D (1997) Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader. In Vitro Cell Dev Biol Anim 33:256–260

    Article  PubMed  CAS  Google Scholar 

  • Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Slegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834

    Article  PubMed  CAS  Google Scholar 

  • Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58:82–88

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: A Lajtha A (ed) Handbook of Neurochemistry. vol. 8. 2nd edn. Plenum, New York, pp 603–661

    Google Scholar 

  • Hertz L, Bender AS, Woodbury D, White SA (1989) Potassium induced calcium uptake in astrocytes and its potent inhibition by a calcium channel blocker. J Neurosci Res 22:209–215

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Code WE, Sykova E (1992) Ions, water, and energy in brain cells: a synopsis of interrelations. Can J Physiol Pharmacol 70(Suppl):S100–S106

    PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Chen Y, Bersudsky Y, Wolfson M (2004) Shared effects of all three conventional anti-bipolar drugs on the phosphoinositide system in astrocytes. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 1033–1048

    Google Scholar 

  • Janka Z, Szentistvanyi I, Rimanoczy A, Juhasz A (1980) The influence of external sodium and potassium on lithium uptake by primary brain cell cultures at “therapeutic” lithium concentration. Psychopharmacol (Berl) 71:159–163

    Article  CAS  Google Scholar 

  • Jayakumar AR, Panickar KS, Murthy ChRK, Norenberg MD (2006) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T (1998) Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur Arch Psychiatry Clin Neurosci 248:301–306

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Inubushi T, Kato N (2000) Prediction of lithium response by 31P-MRS in bipolar disorder. Int J Neuropsychopharmacol 3:83–85

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen CS, Lund-Andersen H, Hertz L (1973) Effects of lithium ions in a pharmacological concentration on potassium and sodium ions in rat brain cortex slices. Trans Biochem Soc 1:111–114

    CAS  Google Scholar 

  • Kobayashi Y, Pang T, Iwamoto T, Wakabayashi S, Shigekawa M (2000) Lithium activates mammalian Na+/H+ exchangers: isoform specificity and inhibition by genistein. Pflügers Arch 439:455–462

    Article  PubMed  CAS  Google Scholar 

  • Koeppen BM, Steinmetz PR (1983) Basic mechanisms of urinary acidification. Med Clin North Am 67:753–770

    PubMed  CAS  Google Scholar 

  • Kol S, Ruutiainen-Altman K, Ben-Shlomo I, Payne DW, Ando M, Adashi EY (1997) The rat ovarian phospholipase A2 system: gene expression, cellular localization, activity characterization, and interleukin-1 dependence. Endocrinol 138:322–331

    Article  CAS  Google Scholar 

  • Kong EKC, Peng L, Chen Y, Yu ACH, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem International 27:113–120

    Article  CAS  Google Scholar 

  • Laghmani K, Richer C, Borensztein P, Paillard M, Froissart M (2001) Expression of rat thick limb Na/H exchangers in potassium depletion and chronic metabolic acidosis. Kidney Int 60:1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Lei B, Lionetti V, Young ME, Chandler MP, d’Agostino C, Kang E, Altarejos M, Matsuo K, Hintze TH, Stanley WC, Recchia FA (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36:567–576

    Article  PubMed  CAS  Google Scholar 

  • Li B, Gu L, Zhang H, Huang J, Chen Y, Hertz L, Peng L (2007) Up-regulation of cPLA2 gene expression in astrocytes by all three conventional anti-bipolar drugs is drug-specific and enzyme-specific. Psychopharmacol (Berl) 194:333–345

    Article  CAS  Google Scholar 

  • Lubrich B, van Calker D (1999) Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs. Neuropsychopharmacol 21:519–529

    Article  CAS  Google Scholar 

  • Matskevitch J, Wagner CA, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F (1998) Effect of extracellular pH on the myo-inositol transporter SMIT expressed in Xenopus oocytes. Pflugers Arch 436:854–857

    Article  PubMed  CAS  Google Scholar 

  • Manning TJ Jr, Sontheimer H (1999) Recording of intracellular Ca2+, Cl-, pH and membrane potential in cultured astrocytes using a fluorescence plate reader. J Neurosci Methods 91:73–81

    Article  PubMed  CAS  Google Scholar 

  • McAlear SD, Bevensee MO (2004) pH Regulation in non-neuronal brain cells and interstitial fluid. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 707–745

    Google Scholar 

  • Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  • Morgan EE, Chandler MP, Young ME, McElfresh TA, Kung TA, Rennison JH, Tserng KY, Hoit BD, Stanley WC (2006) Dissociation between gene and protein expression of metabolic enzymes in a rodent model of heart failure. Eur J Heart Fail 8:687–693

    Article  PubMed  CAS  Google Scholar 

  • Moore CM, Demopulos CM, Henry ME, Steingard RJ, Zamvil L, Katic A, Breeze JL, Moore JC, Cohen BM, Renshaw PF (2002) Brain-to-serum lithium ratio and age: an in vivo magnetic resonance spectroscopy study. Am J Psychiatry 159:1240–1242

    Article  PubMed  Google Scholar 

  • Obara M, Szeliga M, Albrecht J (2008) Regulation of pH in the mammalian central nervous system in normal and pathological conditions: facts and hypotheses. Neurochem Int 52:905–919

    Article  PubMed  CAS  Google Scholar 

  • Orlowski J (1993) Heterologous expression and functional properties of amiloride high affinity (NHE-1) and low affinity (NHE-3) isoforms of the rat Na/H exchanger. J Biol Chem 268:16369–16377

    PubMed  CAS  Google Scholar 

  • Patton HK, Zhou ZH, Bubien JK, Benveniste EN, Benos DJ (2000) gp120-Induced alterations of human astrocyte function: Na+/H+ exchange, K+ conductance, and glutamate flux. Am J Physiol Cell Physiol 279:C700–708

    PubMed  CAS  Google Scholar 

  • Peng L, Martin-Vasallo P, Sweadner KJ (1997) Isoforms of Na,K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J Neurosci 17:3488–3502

    PubMed  CAS  Google Scholar 

  • Phatak P, Shaldivin A, King LS, Shapiro P, Regenold WT (2006) Lithium and inositol: effects on brain water homeostasis in the rat. Psychopharmacology 186:41–47

    Article  PubMed  CAS  Google Scholar 

  • Pizzonia JH, Ransom BR, Pappas CA (1996) Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes. J Neurosci Res 44:191–198

    Article  PubMed  CAS  Google Scholar 

  • Ransom BR (2000) Glial modulation of neural excitability mediated by extracellular pH: a hypothesis revisited. Prog Brain Res 125:217–228

    Article  PubMed  CAS  Google Scholar 

  • Regenold WT (2008) Lithium and increased cortical gray matter—more tissue or more water. Biol Psychiatry 63:17

    Article  Google Scholar 

  • Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196

    Article  PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (2003) pH Regulation in mammalian glia. In: Kaila K, Ransom BR (eds) pH and brain function. Wiley-Liss, New York, pp 253–275

    Google Scholar 

  • Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:569–617

    Google Scholar 

  • Soares JC, Boada F, Spencer S, Mallinger AG, Dippold CS, Wells KF, Frank E, Keshavan MS, Gershon S, Kupfer DJ (2001) Brain lithium concentrations in bipolar disorder patients: preliminary 7Li magnetic resonance studies at 3 T. Biol Psychiatry 49:437–443

    Article  PubMed  CAS  Google Scholar 

  • Sproule B (2002) Lithium in bipolar disorder: can drug concentrations predict therapeutic effect. Clin Pharmacokinet 41:639–660

    Article  PubMed  Google Scholar 

  • Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  • Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B (2001) Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J 20:4467–4477

    Article  PubMed  CAS  Google Scholar 

  • Uldry M, Steiner P, Zurich MG, Béguin P, Hirling H, Dolci W, Thorens B (2004) Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO J 23:531–540

    Article  PubMed  CAS  Google Scholar 

  • Vaden DL, Ding D, Peterson B, Greenberg ML (2001) Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 276:15466–15471

    Article  PubMed  CAS  Google Scholar 

  • Walz W, Hertz L (1982) Acute and chronic effects of lithium in therapeutically relevant concentrations on potassium uptake into astrocytes. Psychopharmacol (Berl) 78:309–313

    Article  CAS  Google Scholar 

  • Wolfson M, Bersudsky Y, Zinger E, Simkin M, Belmaker RH, Hertz L (2000) Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Res 855:158–161

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999a) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999b) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

    Article  PubMed  CAS  Google Scholar 

  • Wong YH, Kalmbach SJ, Hartman BK, Sherman WR (1987) Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localized in the vasculature of brain. J Neurochem 48:1434–1442

    Article  PubMed  CAS  Google Scholar 

  • Wraae O, Hillman H, Round E (1976) The uptake of low concentrations of lithium ions into rat cerebral cortex slices and its dependence on cations. J Neurochem 26:835–843

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Liu Y, Figueroa DJ, Chiu CS, Wei N, Lawlor AM, Lu P, Sur C, Koblan KS, Connolly TM (2004) Characterization and localization of a human serine racemase. Mol Brain Res 125:96–104

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Hertz L, Code WE (1996) Effects of benzodiazepines on potassium-induced increase in free cytosolic calcium concentration in astrocytes: interactions with nifedipine and the peripheral-type benzodiazepine antagonist PK 11195. Can J Physiol Pharmacol 74:273–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant no. 30572180 and no. 30770667 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Steady-state pHi in primary cultures of astrocytes after chronic treatment with LiCl. Cells were treated with 0 (control), 0.5, 1.0, or 2.0 mM Li+ for 2 weeks. All results are means of pHi of five samples. SEM values are indicated by vertical bars. Cultures treated with 2 mM Li+ were significantly different from control cultures and from cultures treated with 0.5 mM Li+ (<0.05) (DOC 99.0 KB)

Supplementary Fig. 2

Acute effect of LiCl on recovery of pHi from an acid load in primary cultures of astrocytes. Cells were exposed to 20 mM NH4Cl for 2 min. A representative experiment showing recovery of pHi after 30 min of incubation with 0 (control; diamonds), 0.5 (circles), 1.0 (triangles), or 2.0 mM (squares) Li+. (Inset) Recovery of pHi indicated as ΔpHit. All results are means of ΔpHit of four samples, normalized in relation to the average of the control in the same plate, assigned a value of 1. SEM values are indicated by vertical bars. *P < 0.05 vs control cultures (DOC 239 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, D., Du, T., Li, B. et al. Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion. Psychopharmacology 200, 187–195 (2008). https://doi.org/10.1007/s00213-008-1194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1194-8

Keywords

Navigation