Skip to main content
Log in

Lithium and inositol: effects on brain water homeostasis in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Since its earliest use in psychiatry, lithium has been known to alter body water homeostasis. Although lithium is also known to decrease the concentration of inositol, an important brain osmolyte, little is known of the effects of lithium on brain water homeostasis.

Objective

To determine whether lithium alters brain water homeostasis, and, if so, whether the mechanism involves changes in inositol concentration.

Materials and methods

Rats were fed regular food or regular food plus lithium chloride for either 11 days or 5 weeks. Brains were dissected and assayed for tissue water by the wet-dry method and for inositol by gas chromatography–mass spectrometry.

Results

We found a statistically significant (p=0.05, corrected) 3.1% mean elevation in frontal cortex tissue water in 5-week lithium-fed rats (86.7±3.9%), compared to control rats (83.6±2.6%). Inositol concentration correlated inversely with percent tissue water (r=−0.50, p=0.003, corrected) in pooled samples of 5-week lithium-fed rats, and was significantly lower in frontal cortex and hippocampus of 5-week lithium-fed rats, compared to controls. Rats fed lithium for 11 days did not differ significantly from controls on either variable.

Conclusions

This is the first report of a lithium-induced increase in brain tissue water. Although the mechanism is unclear, it does not appear to result from changes in brain inositol concentration or blood sodium concentration. This finding may have implications for the therapeutic or toxic effects of lithium on brain, because increased tissue water can augment cell excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • A.P.A (2002) Practice guideline for the treatment of patients with bipolar disorder (revision). Am J Psychiatry 159:1–50

    Article  Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium-treated rats. Nat New Biol 233:267–268

    Article  CAS  PubMed  Google Scholar 

  • Angrist BM, Gershon S, Levitan SJ, Blumberg AG (1970) Lithium-induced diabetes insipidus-like syndrome. Compr Psychiatry 11:141–146

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y, Tamura M, Itoh Y, Seto T, Nonaka K, Mukai H, Ukai Y (2001) Effective plasma concentration of a novel Na+/Ca2+ channel blocker NS-7 for its cerebroprotective actions in rats with a transient middle cerebral artery occlusion. J Pharmacol Exp Ther 296:306–311

    CAS  PubMed  Google Scholar 

  • Baer L, Kassir S, Fieve R (1970) Lithium-induced changes in electrolyte balance and tissue electrolyte concentration. Psychopharmacologia 17:216–224

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    CAS  PubMed  Google Scholar 

  • Bersudsky Y, Kaplan Z, Shapiro Y, Agam G, Kofman O, Belmaker RH (1994) Behavioral evidence for the existence of two pools of cellular inositol. Eur Neuropsychopharmacol 4:463–467

    Article  CAS  PubMed  Google Scholar 

  • Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, Charney DS, Gore JC, Krystal JH, Peterson BS (2003) A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 60:601–609

    Article  PubMed  Google Scholar 

  • Cade JFJ (1949) Lithium salts in the treatment of psychotic excitement. Med J Aust 36:349–352

    Google Scholar 

  • Dogan A, Rao AM, Hatcher J, Rao VL, Baskaya MK, Dempsey RJ (1999) Effects of MDL 72527, a specific inhibitor of polyamine oxidase, on brain edema, ischemic injury volume, and tissue polyamine levels in rats after temporary middle cerebral artery occlusion. J Neurochem 72:765–770

    Article  CAS  PubMed  Google Scholar 

  • Dolan JP (1998) Use of volumetric heating to improve heat transfer during vial freeze-drying mechanical engineering. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Edelfors S (1977) The influence of lithium on water binding ability, consistency and macromolecules in the rat brain. Acta Pharm Toxicol (Copenh) 40:126–133

    CAS  Google Scholar 

  • Harwood AJ (2005) Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatry 10:117–126

    Article  CAS  PubMed  Google Scholar 

  • Heilig CW, Stromski ME, Blumenfeld JD, Lee JP, Gullans SR (1989) Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol 257:F1108–F1116

    CAS  PubMed  Google Scholar 

  • Kaplan BJ, Sadock VA (2003) Synopsis of psychiatry, 9th edn. Lippincott Williams &Wilkins

  • Kaskey GB, Salzman LF, Ciccone JR, Klorman R (1980) Effects of lithium on evoked potentials and performance during sustained attention. Psychiatry Res 3:281–289

    Article  CAS  PubMed  Google Scholar 

  • Kerry RJ, Owen G (1970) Lithium carbonate as a mood and total body water stabilizer. Arch Gen Psychiatry 22:301–303

    CAS  PubMed  Google Scholar 

  • Kishimoto M, Kajimoto Y, Kubota M, Watarai T, Shiba Y, Kawamori R, Inaba T, Kamada T, Yamasaki Y (1997) Sensitive, selective gas chromatographic–mass spectrometric analysis with trifluoroacetyl derivatives and a stable isotope for studying tissue sorbitol-producing activity. J Chromatogr B Biomed Sci Appl 688:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Lien YH, Shapiro JI, Chan L (1991) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Invest 88:303–309

    Article  CAS  PubMed  Google Scholar 

  • Lubrich B, Patishi Y, Kofman O, Agam G, Berger M, Belmaker RH, van Calker D (1997) Lithium-induced inositol depletion in rat brain after chronic treatment is restricted to the hypothalamus. Mol Psychiatry 2:407–412

    Article  CAS  PubMed  Google Scholar 

  • Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Monks PJ, Thompson JM, Bullmore ET, Suckling J, Brammer MJ, Williams SC, Simmons A, Giles N, Lloyd AJ, Harrison CL, Seal M, Murray RM, Ferrier IN, Young AH, Curtis VA (2004) A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 6:550–564

    Article  PubMed  Google Scholar 

  • Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK (2000) Lithium-induced increase in human brain grey matter. Lancet 356:1241–1242

    Article  CAS  PubMed  Google Scholar 

  • Muller V, Birbaumer N, Preissl H, Braun C, Lang F (2002) Effects of water on cortical excitability in humans. Eur J Neurosci 15:528–538

    Article  PubMed  Google Scholar 

  • O’Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH (2003a) Chronic lithium and sodium valproate both decrease the concentration of myoinositol and increase the concentration of inositol monophosphates in rat brain. Eur Neuropsychopharmacol 13:199–207

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell T, Rotzinger S, Ulrich M, Hanstock CC, Nakashima TT, Silverstone PH (2003b) Effects of chronic lithium and sodium valproate on concentrations of brain amino acids. Eur Neuropsychopharmacol 13:220–227

    Article  PubMed  CAS  Google Scholar 

  • Osehobo EP, Andrew RD (1993) Osmotic effects upon the theta rhythm, a natural brain oscillation in the hippocampal slice. Exp Neurol 124:192–199

    Article  CAS  PubMed  Google Scholar 

  • Pash MP, Tweed WA (1979) Tissue albumin and water content in the early stages of vasogenic brain edema formation. Can J Neurol Sci 6:423–426

    CAS  PubMed  Google Scholar 

  • Pettegrew JW, Panchalingam K, McClure RJ, Gershon S, Muenz LR, Levine J (2001) Effects of chronic lithium administration on rat brain phosphatidylinositol cycle constituents, membrane phospholipids and amino acids. Bipolar Disord 3:189–201

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum A, Sullivan EV, Adalsteinsson E, Garrick T, Harper C (2004) Postmortem MR imaging of formalin-fixed human brain. NeuroImage 21:1585–1595

    Article  PubMed  Google Scholar 

  • Rangel-Guerra RA, Perez-Payan H, Minkoff L, Todd LE (1983) Nuclear magnetic resonance in bipolar affective disorders. AJNR Am J Neuroradiol 4:229–231

    CAS  PubMed  Google Scholar 

  • Regenold WT, Kling MA, Hauser P (2000) Elevated sorbitol concentration in the cerebrospinal fluid of patients with mood disorders. Psychoneuroendocrinology 25:593–606

    Article  CAS  PubMed  Google Scholar 

  • Sassi RB, Nicoletti M, Brambilla P, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2002) Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett 329:243–245

    Article  CAS  PubMed  Google Scholar 

  • Schou M (1957) Biology and pharmacology of the lithium ion. Pharmacol Rev 9:17–58

    CAS  PubMed  Google Scholar 

  • Schou M (1958) Lithium studies. 1. Toxicity. Acta Pharm Toxicol (Copenh) 15:70–84

    CAS  Google Scholar 

  • Schwab M, Bauer R, Zwiener U (1997) The distribution of normal brain water content in Wistar rats and its increase due to ischemia. Brain Res 749:82–87

    Article  CAS  PubMed  Google Scholar 

  • Sherman WR, Packman PM, Laird MH, Boshans RL (1977) Measurement of myo-inositol in single cells and defined areas of the nervous system by selected ion monitoring. Anal Biochem 78:119–131

    Article  CAS  PubMed  Google Scholar 

  • Shigeno T, Brock M, Shigeno S, Fritschka E, Cervos-Navarro J (1982) The determination of brain water content: microgravimetry versus drying-weighing method. J Neurosurg 57:99–107

    Article  CAS  PubMed  Google Scholar 

  • Sokal R, Rohlf F (1995) Biometry. Freeman

  • Stone KA (1999) Lithium-induced nephrogenic diabetes insipidus. J Am Board Fam Pract 12:43–47

    CAS  PubMed  Google Scholar 

  • Strange K, Morrison R, Heilig CW, DiPietro S, Gullans SR (1991) Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Physiol 260:C784–C790

    CAS  PubMed  Google Scholar 

  • Swann AC, Marini JL, Sheard MH, Maas JW (1980) Effects of chronic dietary lithium on activity and regulation of (Na+,K+)-adenosine triphosphatase in rat brain. Biochem Pharmacol 29:2819–2823

    Article  CAS  PubMed  Google Scholar 

  • Thomsen K, Jensen J, Olesen OV (1974) Lithium-induced loss of body sodium and the development of severe intoxication in rats. Acta Pharm Toxicol (Copenh) 35:337–346

    CAS  Google Scholar 

  • Videen JS, Michaelis T, Pinto P, Ross BD (1995) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest 95:788–793

    Article  CAS  PubMed  Google Scholar 

  • Wolfson M, Bersudsky Y, Hertz E, Berkin V, Zinger E, Hertz L (2000) A model of inositol compartmentation in astrocytes based upon efflux kinetics and slow inositol depletion after uptake inhibition. Neurochem Res 25:977–982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was made possible by funds from the Stanley Medical Research Institute. We are grateful to Ms. Lisa McFarland for her expert help with the GC-MS, and to Dr. Mario Borgnia for his inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Regenold.

Additional information

This research was made possible by funds from the Stanley Medical Research Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phatak, P., Shaldivin, A., King, L.S. et al. Lithium and inositol: effects on brain water homeostasis in the rat. Psychopharmacology 186, 41–47 (2006). https://doi.org/10.1007/s00213-006-0354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0354-y

Keywords

Navigation