Skip to main content
Log in

Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article we consider the initial value problem for a scalar conservation law in one space dimension with a spatially discontinuous flux. There may be infinitely many flux discontinuities, and the set of discontinuities may have accumulation points. Thus the existence of traces cannot be assumed. In Audusse and Perthame (Proc R Soc Edinb Sect A 135:253–265, 2005) proved a uniqueness result that does not require the existence of traces, using adapted entropies. We generalize the Godunov-type scheme of Adimurthi et al. (SIAM J Numer Anal 42(1):179–208, 2004) for this problem with the following assumptions on the flux function, (i) the flux is BV in the spatial variable and (ii) the critical point of the flux is BV as a function of the space variable. We prove that the Godunov approximations converge to an adapted entropy solution, thus providing an existence result, and extending the convergence result of Adimurthi, Jaffré and Gowda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Ghoshal, S.S., Veerappa Gowda G.D: Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux. Commun. Pure Appl. Math. 64(1), 84–115 (2011)

    Article  MathSciNet  Google Scholar 

  2. Adimurthi, Jaffré, J., Veerappa Gowda G.D: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–208 (2004)

    Article  MathSciNet  Google Scholar 

  3. Adimurthi, Mishra, S., Veerappa Gowda G.D: Optimal entropy solutions for conservation laws with discontinuous flux functions. J. Hyperbolic Differ. Equ. 2, 783–837 (2005)

    Article  MathSciNet  Google Scholar 

  4. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17, 551–572 (2013)

    Article  MathSciNet  Google Scholar 

  5. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201, 27–86 (2011)

    Article  MathSciNet  Google Scholar 

  6. Audusse, E., Perthame, B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. Sect. A 135, 253–265 (2005)

    Article  MathSciNet  Google Scholar 

  7. Baiti, P., Jenssen, H.K.: Well-posedness for a class of \(2\times 2\) conservation laws with \(L^{\infty }\) data. J. Differ. Equ. 140, 161–185 (1997)

    Article  Google Scholar 

  8. Bürger, R., Karlsen, K.H., Risebro, N.H., Towers, J.D.: Well-posedness in \(BV_t\) and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 97, 25–65 (2004)

    Article  MathSciNet  Google Scholar 

  9. Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)

    Article  MathSciNet  Google Scholar 

  10. Diehl, S.: A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56, 388–419 (1996)

    Article  MathSciNet  Google Scholar 

  11. Garavello, M., Natalini, R., Piccoli, B., Terracina, A.: Conservation laws with discontinuous flux. Netw. Heterog. Media 2, 159–179 (2007)

    Article  MathSciNet  Google Scholar 

  12. Ghoshal, S.S.: Optimal results on TV bounds for scalar conservation laws with discontinuous flux. J. Differ. Equ. 3, 980–1014 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ghoshal, S.S.: BV regularity near the interface for nonuniform convex discontinuous flux. Netw. Heterog. Media 11, 331–348 (2016)

    Article  MathSciNet  Google Scholar 

  14. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, New York (2002)

    Book  Google Scholar 

  15. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970). (Russian)

    MathSciNet  Google Scholar 

  16. May, L., Shearer, M., Davis, K.: Scalar conservation laws with nonconstant coefficients with application to particle size segregation in granular flow. J. Nonlinear Sci. 20, 689–707 (2010)

    Article  MathSciNet  Google Scholar 

  17. Panov, E.Y.: Existence of strong traces for quasi-solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 4, 729–770 (2007)

    Article  MathSciNet  Google Scholar 

  18. Panov, E.Y.: On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux. J. Hyperbolic Differ. Equ. 06, 525–548 (2009)

    Article  MathSciNet  Google Scholar 

  19. Piccoli, B., Tournus, M.: A general BV existence result for conservation laws with spatial heterogeneities. SIAM J. Math. Anal. 50, 2901–2927 (2018)

    Article  MathSciNet  Google Scholar 

  20. Shen, W.: On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding. Nonlinear Differ. Equ. Appl. 24, 37 (2017)

    Article  MathSciNet  Google Scholar 

  21. Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38, 681–698 (2000)

    Article  MathSciNet  Google Scholar 

  22. Towers, J.D.: An existence result for conservation laws having BV spatial flux heterogeneities—without concavity. J. Differ. Equ. 269, 5754–5764 (2020)

    Article  MathSciNet  Google Scholar 

  23. Vasseur, A.: Strong traces of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160, 181–193 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First and second author acknowledge the support of the Department of Atomic Energy, Government of India, under Project No. 12-R&D-TFR-5.01-0520. First author would also like to thank Inspire faculty-research Grant DST/INSPIRE/04/2016/000237. We thank two anonymous referees for their careful reading of the paper, and for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Towers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(g:\mathbb {R}\rightarrow \mathbb {R}\) be defined as \(g(x)=\left| x\right| \). Suppose u satisfies entropy condition (12) then set \(v(x,t)=\Psi (u(x,t),x)\) where \(\Psi \) is as in (10). We denote inverse of the map \(\zeta \mapsto \Psi (\zeta ,x)\) by \(\alpha (\cdot ,x)\). Then we have

$$\begin{aligned} \int \limits _{0}^{\infty }\int \limits _{\mathbb {R}}\left[ \left| \alpha (v(x,t),x)-\alpha (k,x)\right| \frac{\partial \phi }{\partial t}+sgn(v-k)(g(v)-g(k))\frac{\partial \phi }{\partial x}\right] \,dxdt\ge 0\nonumber \\ \end{aligned}$$
(93)

for any \(k\in \mathbb {R}\) and \(0\le \phi \in C_0^{\infty }(\mathbb {R}\times \mathbb {R}_+)\).

Lemma 5.1

[18] Let \(v_1,v_2\in L^{\infty }(\mathbb {R}\times \mathbb {R}_+)\) be two functions satisfying (93). Then we have

$$\begin{aligned}&\frac{\partial }{\partial t}\left| \alpha (v_1(x,t),x)-\alpha (v_2(x,t),x)\right| +\frac{\partial }{\partial x}sgn(v_1-v_2)(g(v_1)-g(v_2))\nonumber \\&\quad \le 0 \text{ in } \mathcal {D}^{\prime }(\mathbb {R}\times \mathbb {R}_+). \end{aligned}$$
(94)

Proof

For \(0\le \phi \in C_c^{\infty }(\mathbb {R}_+\times \mathbb {R})\) and \(0\le \psi \in C_c^{\infty }(\mathbb {R}_+\times \mathbb {R})\) we have

$$\begin{aligned}&\int \limits _{0}^{\infty }\int \limits _{\mathbb {R}}\left[ \left| \alpha (v_1(x,t),x)-\alpha (k,x)\right| \frac{\partial \phi }{\partial t}\right. \nonumber \\&\quad \left. +sgn(v_1-k)(g(v_1)-g(k))\frac{\partial \phi }{\partial x}\right] \,dxdt\ge 0 \end{aligned}$$
(95)

and

$$\begin{aligned}&\int \limits _{0}^{\infty }\int \limits _{\mathbb {R}}\left[ \left| \alpha (v_2(y,s),y)-\alpha (l,y)\right| \frac{\partial \psi }{\partial s}\right. \nonumber \\&\left. +sgn(v_2-l)(g(v_2)-g(l))\frac{\partial \psi }{\partial y}\right] \,dyds\ge 0. \end{aligned}$$
(96)

Fix a \(\Phi \in C_c^{\infty }(\mathbb {R}\times \mathbb {R}_+)\). Let \(\eta _\epsilon \) be Friedrichs mollifiers. Consider

$$\begin{aligned} \phi (x,t)= & {} \Phi \left( x,t\right) \eta _\epsilon \left( {y-x}\right) \eta _\delta \left( {s-t}\right) , \end{aligned}$$
(97)
$$\begin{aligned} \psi (y,s)= & {} \Phi \left( x,t\right) \eta _\epsilon \left( {y-x}\right) \eta _\delta \left( {s-t}\right) . \end{aligned}$$
(98)

Putting \(k=v_2(y,s)\) and \(l=v_1(x,t)\) in (95) and (96) respectively and adding the resultants we get

$$\begin{aligned}&\int \limits _{\mathbb {R}\times \mathbb {R}_+}\int \limits _{\mathbb {R}\times \mathbb {R}_+}P_1(x,t,y,s)\frac{\partial }{\partial t}(\Phi (x,t)\eta _\epsilon (y-x)\eta _\delta (s-t))\,dtdxdsdy\nonumber \\&\quad +\int \limits _{\mathbb {R}\times \mathbb {R}_+}\int \limits _{\mathbb {R}\times \mathbb {R}_+}P_2(x,t,y,s)\frac{\partial }{\partial s}(\Phi (x,t)\eta _\epsilon (y-x)\eta _\delta (s-t))\,dtdxdsdy\nonumber \\&\quad +\int \limits _{\mathbb {R}\times \mathbb {R}_+}\int \limits _{\mathbb {R}\times \mathbb {R}_+}Q(x,t,y,s)\eta _\epsilon (y-x)\eta _\delta (s-t)\frac{\partial }{\partial x}\Phi (x,t),dtdxdsdy\ge 0\nonumber \\ \end{aligned}$$
(99)

where

$$\begin{aligned} P_1(x,t,y,s):= & {} \left| \alpha (v_1(x,t),x)-\alpha (v_2(y,s),x)\right| ,\\ P_2(x,t,y,s):= & {} \left| \alpha (v_1(x,t),y)-\alpha (v_2(y,s),y)\right| ,\\ Q(x,t,y,s):= & {} sgn(v_1(x,t)-v_2(y,s))(g(v_1(x,t))-g(v_2(y,s))). \end{aligned}$$

Let \(E_0,E_1,E_2\subset \mathbb {R}\) be three sets such that

$$\begin{aligned} E_0:= & {} \left\{ t\in \mathbb {R}_+; t \text{ is } \text{ a } \text{ Lebesgue } \text{ point } \text{ of } v_2(x,t) \text{ for } \text{ a.e. } x\in \mathbb {R}\right\} , \end{aligned}$$
(100)
$$\begin{aligned} E_1:= & {} \left\{ x\in \mathbb {R}; x \text{ is } \text{ a } \text{ Lebesgue } \text{ point } \text{ of } v_2(x,t) \text{ for } \text{ a.e. } t\in \mathbb {R}_+\right\} , \end{aligned}$$
(101)
$$\begin{aligned} E_2:= & {} \left\{ x;\lim \limits _{\epsilon \rightarrow 0}\int \eta _\epsilon \left( {x-y}\right) \max \limits _{\left| u\right| \le r}\left| \alpha (u,x)-\alpha (u,y)\right| =0\right\} , \end{aligned}$$
(102)

where \(r=\max \{\Vert v_1\Vert _{L^{\infty }(\mathbb {R}\times \mathbb {R}_+)},\Vert v_2\Vert _{L^\infty (\mathbb {R}\times \mathbb {R}_+)}\}\). Since \(v_2\in L^{\infty }(\mathbb {R}\times \mathbb {R}_+)\), \(E_0,E_1\) are measurable sets and \(meas(\mathbb {R}_+\setminus E_0)=meas(\mathbb {R}\setminus E_1)=0\). By our assumption, for a fixed \(x\in \mathbb {R}\), \(\Psi (x,\cdot )\) is Lipschitz on \([-r,r]\). Since \(C([-r,r])\) is separable, by Pettis Theorem we have measurability of \(E_2\) and \(meas(\mathbb {R}\setminus E_2)=0\). Therefore we can get

$$\begin{aligned}&\left| \int _{\mathbb {R}}P_1(x,t,y,s)\eta _{\epsilon }(y-x)\,dy-P_1(x,t,x,s)\right| \nonumber \\&\quad \le \int \limits _{\mathbb {R}}\left| \alpha (v_2(y,s),x)-\alpha (v_2(x,s),x)\right| \eta _\epsilon (y-x)\,dy\rightarrow 0 \end{aligned}$$
(103)

as \(\epsilon \rightarrow 0\) for \(x\in E_1\) and a.e. \(t,s\in \mathbb {R}_+\). We can also obtain

$$\begin{aligned}&\left| \int \limits _{\mathbb {R}}P_2(x,t,y,s)\eta _\epsilon (y-x)dy-P_2(x,t,x,s)\right| \nonumber \\&\quad \le \int \limits _{\mathbb {R}}\left| \alpha (v_2(y,s),x)-\alpha (v_2(x,s),x)\right| \eta _\epsilon (y-x)\,dy\nonumber \\&\qquad +2\int \limits _\mathbb {R}\eta _\epsilon \left( {x-y}\right) \max \limits _{\left| u\right| \le r}\left| \alpha (u,x)-\alpha (u,y)\right| \nonumber \\&\qquad \rightarrow 0 \end{aligned}$$
(104)

as \(\epsilon \rightarrow 0\) for \(x\in E_2\) and a.e. \(t,s\in \mathbb {R}_+\). With the help of (103) and (104) and Lebesgue Dominated Convergence Theorem we have

$$\begin{aligned}&\lim \limits _{\epsilon \rightarrow 0}\int \limits _{\mathbb {R}^2_+}\int \limits _{\mathbb {R}^2_+}\left( P_1(x,t,y,s)\frac{\partial }{\partial t}(\Phi (x,t)\eta _{\delta }(s-t))\right. \nonumber \\&\quad \left. + P_2(x,t,y,s)\frac{\partial }{\partial s}(\Phi (x,t)\eta _{\delta }(s-t))\right) \end{aligned}$$
(105)
$$\begin{aligned}&\eta _\epsilon (y-x)\,dtdxdsdy =\int \limits _{\mathbb {R}^2_+}\int \limits _{\mathbb {R}_+}P_1(x,t,x,s)\eta _{\delta }(s-t)\frac{\partial }{\partial t}\Phi (x,t)\,dtdxds.\qquad \end{aligned}$$
(106)

In a similar way we can show

$$\begin{aligned}&\lim \limits _{\delta \rightarrow 0}\int \limits _{\mathbb {R}^2_+}\int \limits _{\mathbb {R}_+}P_1(x,t,x,s)\eta _{\delta }(s-t)\frac{\partial }{\partial t}\Phi (x,t)\,dtdxds\nonumber \\&\quad =\int \limits _{\mathbb {R}^2_+}P_1(x,t,x,t)\frac{\partial }{\partial t}\Phi (x,t)\,dtdx. \end{aligned}$$
(107)

Similarly we have

$$\begin{aligned}&\left| \int \limits _{\mathbb {R}}Q(x,t,y,s)\eta _\epsilon (y-x)\,dy-Q(x,t,x,s)\right| \nonumber \\&\quad \le \int \limits _{\mathbb {R}}\left| v_2(y,s)-v_2(x,s)\right| \eta _{\epsilon }(y-x)\,dy\rightarrow 0 \end{aligned}$$
(108)

as \(\epsilon \rightarrow 0\) for \(x\in E_1\) and a.e. \(t,s\in \mathbb {R}_+\). Then by Lebesgue Dominated Convergence Theorem we have

$$\begin{aligned}&\lim \limits _{\epsilon \rightarrow 0}\int \limits _{\mathbb {R}^2_+}\int \limits _{\mathbb {R}^2_+}Q(x,t,y,s)\eta _\epsilon (y-x)\eta _\delta (s-t)\frac{\partial }{\partial x}\Phi \,dtdxdsdy\nonumber \\&\quad =\int \limits _{\mathbb {R}^2_+}\int \limits _{\mathbb {R}_+}Q(x,t,x,s)\eta _\delta (s-t)\frac{\partial }{\partial x}\Phi \,dtdxds. \end{aligned}$$
(109)

We also have for a.e. \(x\in \mathbb {R}\) and \(t\in E_0\)

$$\begin{aligned}&\left| \int \limits _{\mathbb {R}_+}Q(x,t,x,s)\eta _\delta (s-t)\,ds-Q(x,t,x,t)\right| \nonumber \\&\quad \le \int \limits _{\mathbb {R}_+}\left| v_2(x,t)-v_2(x,s)\right| \eta _{\delta }(s-t)\,ds\rightarrow 0 \end{aligned}$$
(110)

as \(\delta \rightarrow 0\). This yields

$$\begin{aligned}&\lim \limits _{\epsilon \rightarrow 0,\delta \rightarrow 0}\int \limits _{\mathbb {R}^2_+}\int \limits _{\mathbb {R}^2_+}Q(x,t,y,s)\eta _\epsilon (y-x)\eta _\delta (s-t)\frac{\partial }{\partial x}\Phi \,dtdxdsdy\nonumber \\&\quad =\int \limits _{\mathbb {R}^2_+}Q(x,t,x,t)\frac{\partial }{\partial x}\Phi \,dtdx. \end{aligned}$$
(111)

This completes the proof. \(\square \)

Observe the following

$$\begin{aligned} g(v(x,t))=g(\Psi (u(x,t),x))=A(u(x,t),x)=A(\alpha (v(x,t),x),x). \end{aligned}$$
(112)

From Lemma 5.1 we can prove the following by a similar argument as in [15].

Lemma 5.2

Let \(v_1,v_2\in C([0,T],L^{1}_{loc}(\mathbb {R}))\cap L^{\infty }(\mathbb {R}\times \mathbb {R}_+)\) be two function satisfying (93). Then for a.e. \(t\in [0,T]\) and any \(r>0\) we have

$$\begin{aligned}&\int \limits _{\left| x\right| \le r}\left| \alpha (v_1(x,t),x)-\alpha (v_2(x,t),x)\right| \,dx\nonumber \\&\quad \le \int \limits _{\left| x\right| \le r+L_1t}\left| \alpha (v_1(x,0),x)-\alpha (v_2(x,0),x)\right| \,dx \end{aligned}$$
(113)

swhere \(L_1:=\sup \{\partial _u A(u,x);\,x\in \mathbb {R},\left| u\right| \le \max (\Vert v_1(x,0)\Vert _{L^{\infty }},\Vert v_2(x,0)\Vert _{L^{\infty }})\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, S.S., Jana, A. & Towers, J.D. Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux. Numer. Math. 146, 629–659 (2020). https://doi.org/10.1007/s00211-020-01150-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01150-y

Mathematics Subject Classification

Navigation