Skip to main content
Log in

Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper deals with a Godunov scheme as applied to a scalar conservation law whose flux has discontinuities in both space and time. We extend the definition of vanishing viscosity solution of Karlsen and Towers (J Hyperbolic Differ Equ 14:671–702, 2017) (which applies to a flux with a spatial discontinuity) in order to accommodate the addition of temporal flux discontinuities, and prove that this extended definition implies uniqueness. We prove convergence of the Godunov approximations to the unique vanishing viscosity solution as the mesh size converges to zero, thus establishing well-posedness for the problem. The novel aspect of this paper is the use of a discrete one-sided Lipschitz condition (OSLC) in the discontinuous flux setting. In the classical setting where flux discontinuities are not present, the OSLC is well known to produce an immediate regularizing effect, with a local spatial variation bound resulting at any positive time. We show that the OSLC also produces a regularizing effect at any finite distance from the spatial flux discontinuity. This regularizing effect is not materially affected by temporal flux discontinuities. When combined with a Cantor diagonal argument, these regularizing effects imply convergence of the Godunov approximations. With this new method it is possible to forgo certain assumptions about the flux that seem to be required when using two commonly used convergence methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adimurthi, D.R., Ghoshal, S., Veerappa Gowda, G.D.: Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux. Commun. Pure Appl. Math. 64, 84–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, J.J., Veerappa Gowda, G.D.: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi, M.S., Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17(3), 551–572 (2013)

    Article  MathSciNet  Google Scholar 

  5. Andreianov, B., Cancès, C.: On interface transmission conditions for conservation laws with discontinuous flux of general shape. J. Hyperbolic Differ. Equ. 12(2), 343–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreianov, B., Coclite, B., Donadello, C.: Well-posedness for a monotone solver for traffic junctions. arXiv:1605.01554 (2016)

  7. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andreianov, B., Karlsen, K.H., Risebro, N.H.: On vanishing viscosity approximation of conservation laws with discontinuous flux. Netw. Heterog. Media 5(3), 617–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andreianov, B., Mitrović, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1307–1335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenier, Y., Osher, S.: The discrete one-sided Lipschitz condition for convex scalar conservation laws. SIAM J. Numer. Anal. 25, 8–23 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bretti, G., Natalini, R., Piccoli, B.: Numerical approximations of a traffic flow model on networks. Netw. Heterog. Media 1(1), 57–84 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bürger, R., Karlsen, K.H., Klingenberg, C., Risebro, N.H.: A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units. Nonlinear Anal. Real World Appl. 4(3), 457–481 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bürger, R., Karlsen, K.H., Risebro, N.H., Towers, J.D.: Well-posedness in \(BV_t\) and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 97(1), 25–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bürger, R., García, A., Karlsen, K.H., Towers, J.D.: A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. 60, 387–425 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bürger, R., García, A., Karlsen, K.H., Towers, J.D.: Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Netw. Heterog. Media 3, 1–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bürger, R., Karlsen, K.H., Towers, J.D.: An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cancès, C., Gallouët, T.: On the time continuity of entropy solutions. J. Evol. Equ. 11(1), 43–55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coclite, G.M., Risebro, N.H.: Conservation laws with time dependent discontinuous coefficients. SIAM J. Numer. Anal. 36, 1293–1309 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Delle Monache, M., Goatin, P.: A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete Contin. Dyn. Syst. Ser. S 7(3), 435–447 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Delle Monache, M., Piccoli, B., Rossi, F.: Traffic regulation via controlled speed limit. Preprint available at arXiv:1603.04785 (2016)

  21. Diehl, S.: On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26(6), 1425–1451 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Diehl, S.: Scalar conservation laws with discontinuous flux function. I. The viscous profile condition. Commun. Math. Phys. 176(1), 23–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Diehl, S.: A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56(2), 388–419 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diehl, S.: A regulator for continuous sedimentation in ideal clarifier–thickener units. J. Eng. Math. 60, 265–291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diehl, S.: A uniqueness condition for nonlinear convection–diffusion equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 6(1), 127–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Garavello, M., Piccoli, B.: Traffic Flow on Networks. American Institute of Mathematical Sciences, Springfield (2006)

    MATH  Google Scholar 

  27. Goatin, P., Göttlich, S., Kolb, O.: Speed limit and ramp meter control for traffic flow networks. Eng. Optim. 48, 1121–1144 (2016)

    Article  MathSciNet  Google Scholar 

  28. Ghoshal, S.: Optimal results on TV bounds for scalar conservation laws with discontinuous flux. J. Differ. Equ. 3, 980–1014 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gimse, T., Risebro, N.H.: Riemann problems with a discontinuous flux function. In: Proceedings of 3rd International Conference Hyperbolic Problems, pp. 488–502. Studentlitteratur, Uppsala (1991)

  30. Gimse, T., Risebro, N.H.: Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23(3), 635–648 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goodman, J., LeVeque, R.: A geometric approach to high resolution TVD schemes. SIAM J. Numer. Anal. 25(2), 268–284 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guerra, G., Shen, W.: Vanishing viscosity solutions of Riemann problems for models of polymer flooding. Preprint available at https://math.psu.edu/shen_w/PDF/2017-PV.pdf (2017)

  33. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, New York (2002)

    Book  MATH  Google Scholar 

  34. Karlsen, K.H., Risebro, N.H., Towers, J.D.: On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electron. J. Differ. Equ. No. 93, 23 pp. (electronic) (2002)

  35. Karlsen, K.H., Risebro, N.H., Towers, J.D.: \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection–diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–49 (2003)

    MATH  Google Scholar 

  36. Karlsen, K.H., Towers, J.D.: Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space–time dependent flux. Chin. Ann. Math. 25B, 287–318 (2004)

    Article  MATH  Google Scholar 

  37. Karlsen, K.H., Towers, J.D.: Convergence of a Godunov scheme for for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ. 14, 671–702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Klingenberg, C., Risebro, N.H.: Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Commun. Partial Differ. Equ. 20(11–12), 1959–1990 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. Birkhauser Verlag, Basel (2002)

    Book  MATH  Google Scholar 

  40. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  41. Li, J., Zhang, H.: Modeling space–time inhomogeneities with kinematic wave theory. Transp. Res. Part B 54, 113–125 (2013)

    Article  Google Scholar 

  42. Liu, H., Zhang, L., Sun, D., Wang, D.: Optimize the settings of variable speed limit system to improve the performance of freeway traffic. IEEE Trans. Intell. Transp. Syst. 16(6), 3249–3257 (2015)

    Article  Google Scholar 

  43. Mishra, S.: Numerical methods for conservation laws with discontinuous coefficients. Handb. Numer. Anal. 18, 479–506 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Mitrovic, D.: New entropy conditions for scalar conservation laws with discontinuous flux. Discrete Contin. Dyn. Syst. 30(4), 1191–1210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Muralidharan, A, Horowitz, R.: Optimal control of freeway networks based on the link node cell transmission model. In: Proceedings of American Control Conference, Jun. 2012, pp. 5769–5774 (2012)

  46. Nessyahu, H., Tadmor, E.: The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Numer. Anal. 29(6), 1505–1519 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seguin, N., Vovelle, V.: Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13(2), 221–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen, W.: On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding. Nonlinear Differ. Equ. Appl. 24, 37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  50. Tadmor, E.: The large time behavior of the scalar genuinely nonlinear Lax Friedrichs scheme. Math. Comput. 43, 353–368 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Temple, B.: Global solutions of the Cauchy problem for a class of \(2 \times 2\) non-strictly hyperbolic conservation laws. Adv. Appl. Math. 3, 335–375 (1982)

    Article  MATH  Google Scholar 

  52. Towers, J.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38(2), 681–698 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Towers, J.: A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39(4), 1197–1218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Towers, J.: A fixed grid, shifted stencil scheme for inviscid fluid-particle interaction. Appl. Numer. Math. 110, 26–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Towers, J.: Convergence of the Godunov scheme for a scalar conservation law with time and space flux discontinuities. Accepted for publication in J. Hyperbolic Differ. Equ. Preprint available at https://www.math.ntnu.no/conservation/2016/006.pdf (2016)

Download references

Acknowledgements

I thank two anonymous referees for carefully reading the manuscript and offering thoughtful comments. One referee offered a number of detailed suggestions that were used to make significant simplifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Towers.

Proof of Lemma 4.2

Proof of Lemma 4.2

In this section we prove Lemma 4.2. In the process we prove that the lemma also holds if the Engquist–Osher flux is substituted for the Godunov flux. Our proof is an adaptation of a more global version of the lemma that is found in [31]. We require a local version in order to accommodate the spatial flux discontinuity. Reference [46] also contains a global version of this result applied to several numerical fluxes in addition to the Godunov flux, and [49] has a global version for the Lax–Friedrichs scheme.

Proof

Part 1. Preliminaries We start by presenting a calculation appearing in [31] showing that

$$\begin{aligned} \varDelta _+U_j^n, D_j^n \le {{1} \over {\lambda \mu }}, \quad j \in \mathbb {Z}, \quad n=0,1, \ldots , N. \end{aligned}$$
(A.1)

To this end, let q denote any of the flux functions \(f^m(u), g^m(u)\), \(m=0,\ldots ,M\). In what follows we will use the prime notation \(q'(u)=q_u(u)\), \(q''(u)=q_{uu}(u)\). By Lemma 4.1, we can assume that \(U_j^n \in [\underline{u},\overline{u}]\), and so we can apply the convexity assumption (1.3) and the CFL condition (3.8). This yields

$$\begin{aligned} \begin{aligned} \lambda \mu \left( U_{j+1}^n - U_j^n \right)&\le \lambda \int _{U_j^n}^{U_{j+1}^n} q''(\xi ) \, d \xi \\&= \lambda \left( q'(U_{j+1}^n) - q'(U_{j}^n) \right) \le 2\lambda L_q \le 1, \end{aligned} \end{aligned}$$

and (A.1) follows directly from this.

For the rest of the proof, \(j \in {\hat{\mathbb {Z}}}\), \(n\in \{0,\ldots ,N\}\) are fixed. Due to the assumption \(j \in {\hat{\mathbb {Z}}}\), the interface at \(x=0\) is not involved. Thus we may assume the numerical flux is either \({\bar{f}}^m\) for \({\bar{g}}^m\) for some fixed m. We denote this numerical flux by \({\bar{q}}\), and the underlying flux (\(f^m\) or \(g^m\)) by q. By the convexity assumption, there is a unique \(u^* \in [\underline{u},\overline{u}]\) such that \(u^* = \text {argmin}_{w \in [\underline{u},\overline{u}]} q(w)\). It follows that \(\mathrm {sign}(q'(u)) = \mathrm {sign}(u-u^*)\). Without loss of generality, take \(q(u^*) = 0\). Define \(\psi (z;a) = z - a z^2\), where \(a = \lambda \mu /4>0\). We have

$$\begin{aligned}&\psi (z;a) \ge 0 \quad \hbox {for } z \in [0, 1/a], \nonumber \\&\quad z\mapsto \psi (z;a)\text { is nondecreasing for }z \le 1/(2a) = 2/(\lambda \mu ). \end{aligned}$$
(A.2)

We must prove (4.3), which can be stated in terms of \(\psi \):

$$\begin{aligned} D_j^{n+1} \le \psi (\max (D_{j-1}^n,D_j^n,D_{j+1}^n); a). \end{aligned}$$
(A.3)

Note that by (A.1) \(\max (D_{j-1}^n,D_j^n,D_{j+1}^n) \le 1/(4a)\), allowing us to use (A.2).

We claim that we can assume that \(\varDelta _+ U^n_{j+1}\ge 0\), \(\varDelta _+ U^n_{j-1} \ge 0\). To prove the claim suppose that

$$\begin{aligned} \text {inequality }(A.3)\text { holds when } \varDelta _+U_{j-1}^n, \varDelta _+U_{j+1}^n \ge 0. \end{aligned}$$
(A.4)

The marching formula (3.4) can be expressed as

$$\begin{aligned} U_j^{n+1} = G(U_{j-1}^n,U_j^n,U_{j+1}^n), \end{aligned}$$

where G is nondecreasing in all three arguments; this follows in a straightforward manner from the monotonicity of the numerical flux \({\bar{q}}\) along with the CFL condition (3.8). Define

$$\begin{aligned} {\tilde{U}}_{j-1}^{n} = U_{j-1}^n \wedge U_j^n, \quad {\tilde{U}}_{j}^{n} = U_j^n, \quad {\tilde{U}}_{j+1}^{n} = U_{j+1}^n, \quad {\tilde{U}}_{j+2}^{n} = U_{j+2}^n \vee U_{j+1}^n. \end{aligned}$$

and let

$$\begin{aligned} {\tilde{U}}_j^{n+1} = G({\tilde{U}}_{j-1}^n,{\tilde{U}}_j^n,{\tilde{U}}_{j+1}^n), \quad {\tilde{U}}_{j+1}^{n+1} = G({\tilde{U}}_{j}^n,{\tilde{U}}_{j+1}^n,{\tilde{U}}_{j+2}^n). \end{aligned}$$

By the monotonicity property of G we have

$$\begin{aligned} \begin{aligned} \varDelta _+U_j^{n+1}&= G(U_{j}^n,U_{j+1}^n,U_{j+2}^n) - G(U_{j-1}^n,U_j^n,U_{j+1}^n)\\&\le G({\tilde{U}}_{j}^n,{\tilde{U}}_{j+1}^n,{\tilde{U}}_{j+2}^n ) - G({\tilde{U}}_{j-1}^n,{\tilde{U}}_j^n,{\tilde{U}}_{j+1}^n)\\&= \varDelta _+{\tilde{U}}_j^{n+1}. \end{aligned} \end{aligned}$$
(A.5)

Let \({\tilde{D}}_{j+i}^n = (\varDelta _+ {\tilde{U}}_{j+i}^n )_+\), \(i=-1,0,1\). We have \(0 \le {\tilde{D}}_{j+i}^n = D_{j+i}^n \le 1/(2a)\), \(i=-1,0,1\), so (A.2) still applies. We also have \(\varDelta _+ {\tilde{U}}_{j+1}^n \ge 0\), \(\varDelta _+ {\tilde{U}}_{j-1}^n \ge 0\), so (A.4) implies that

$$\begin{aligned} {\tilde{D}}_j^{n+1} \le \psi \left( \max ({\tilde{D}}_{j-1}^n,{\tilde{D}}_j^n,{\tilde{D}}_{j+1}^n );a\right) . \end{aligned}$$
(A.6)

By (A.5) we have

$$\begin{aligned} D_j^{n+1} \le {\tilde{D}}_j^{n+1}, \end{aligned}$$
(A.7)

and since \({\tilde{D}}_{j+i}^n = D_{j+i}^n\), \(i=-1,0,1\),

$$\begin{aligned} \psi \left( \max ({D}_{j-1}^n,{D}_j^n,{D}_{j+1}^n) ;a\right) =\psi \left( \max ({\tilde{D}}_{j-1}^n,{\tilde{D}}_j^n,{\tilde{D}}_{j+1}^n) ;a\right) . \end{aligned}$$
(A.8)

The proof of the claim is completed by combining (A.6), (A.7), and (A.8). We now continue the proof under the assumption that \(\varDelta _+ U_{j-1}^n \ge 0\), \(\varDelta _+ U_{j+1}^n \ge 0\).

Part 2. Proof for the Engquist–Osher (EO) flux It is convenient to first prove the lemma when the EO flux \({\bar{p}}\) is substituted for the Godunov flux \({\bar{q}}\). After that the proof for the Godunov flux requires only a slight modification. Under the assumptions stated about the flux q, the EO flux has the form

$$\begin{aligned} {\bar{p}}(v,u)= & {} q_-(v) + q_+(u),\text { where }\nonumber \\&\quad q_-(v):= q(v \wedge u^*), \quad q_+(u):= q(u \vee u^*). \end{aligned}$$
(A.9)

We will use the following formulas which follow readily from the definitions of \(q_{\pm }\) in (A.9):

$$\begin{aligned}&q_-(b) - q_-(a) \ge q_-'(a)\left( b\wedge u^* - a\wedge u^* \right) \nonumber \\&\quad +\,{\mu \over 2} \left( b\wedge u^* - a\wedge u^* \right) ^2,\nonumber \\&q_+(b) - q_+(a) \ge q_+'(a)\left( b\vee u^* - a\vee u^* \right) \nonumber \\&\quad +\,{\mu \over 2} \left( b\vee u^* - a\vee u^* \right) ^2. \end{aligned}$$
(A.10)

Starting from

$$\begin{aligned} U_j^{n+1} = U_j^n - \lambda \varDelta _- {\bar{p}}(U_{j+1}^n,U_j^n), \end{aligned}$$

then differencing and applying (A.9) the result is

$$\begin{aligned} \varDelta _+ U_j^{n+1} = \varDelta _+ U_j^n -\lambda \varDelta _+\varDelta _- q_-(U_{j+1}^n) - \lambda \varDelta _+\varDelta _- q_+(U_{j}^n). \end{aligned}$$
(A.11)

The second differences appearing in (A.11) can be expressed in the following form:

$$\begin{aligned} \varDelta _+\varDelta _- q_-(U_{j+1}^n)= & {} \left( q_-(U_{j+2}^n) - q_-(U_{j+1}^n) \right) \nonumber \\&\quad + \left( q_-(U_{j}^n) - q_-(U_{j+1}^n) \right) ,\nonumber \\ \varDelta _+\varDelta _- q_+(U_{j}^n)= & {} \left( q_+(U_{j+1}^n) - q_+(U_{j}^n) \right) \nonumber \\&\quad + \left( q_+(U_{j-1}^n) - q_+(U_{j}^n) \right) . \end{aligned}$$
(A.12)

Let

$$\begin{aligned} \varDelta _+ U^-_{j} = U_{j+1}^n \wedge u^* - U_{j}^n \wedge u^*, \quad \varDelta _+ U^+_{j} = U_{j+1}^n \vee u^* - U_{j}^n \vee u^*. \end{aligned}$$

Starting from (A.12) and applying (A.10) we find that

$$\begin{aligned} \varDelta _+\varDelta _- q_-(U_{j+1}^n)\ge & {} q'_-(U_{j+1}^n) \varDelta _+ U^-_{j+1} + {\mu \over 2} ( \varDelta _+ U^-_{j+1})^2\nonumber \\&\quad - \,q'_-(U_{j+1}^n) \varDelta _+ U^-_{j} + {\mu \over 2} ( \varDelta _+ U^-_{j})^2,\nonumber \\ \varDelta _+\varDelta _- q_+(U_{j}^n)\ge & {} q'_+(U_{j}^n) \varDelta _+ U^+_{j} + {\mu \over 2} ( \varDelta _+ U^+_{j})^2 \nonumber \\&\quad -\, q'_+(U_{j}^n) \varDelta _+ U^+_{j-1} + {\mu \over 2} ( \varDelta _+ U^+_{j-1})^2. \end{aligned}$$
(A.13)

Substituting (A.13) into (A.11) yields

$$\begin{aligned} \varDelta _+ U_j^{n+1}\le & {} \varDelta _+U_j^n - \lambda q'_-(U_{j+1}^n) \varDelta _+ U^-_{j+1} - {{\lambda \mu } \over 2} ( \varDelta _+ U^-_{j+1})^2 \nonumber \\&\quad +\, \lambda q'_-(U_{j+1}^n) \varDelta _+ U^-_{j} - {{\lambda \mu } \over 2} ( \varDelta _+ U^-_{j})^2\nonumber \\&\quad -\,\lambda q'_+(U_{j}^n) \varDelta _+ U^+_{j} - {{\lambda \mu } \over 2} ( \varDelta _+ U^+_{j})^2 \nonumber \\&\quad +\,\lambda q'_+(U_{j}^n) \varDelta _+ U^+_{j-1} - {{\lambda \mu } \over 2} ( \varDelta _+ U^+_{j-1})^2. \end{aligned}$$
(A.14)

From here the proof reduces to four cases, depending on the ordering of \(u^*, U_j^n, U_{j+1}^n\).

Case 1 \(u^* \le U_j^n, U_{j+1}^n\). We are assuming that \(U^n_{j+2} \ge U^n_{j+1}\), and so we also have \(u^* \le U_j^n, U_{j+1}^n, U_{j+2}^n\). Inequality (A.14) becomes

$$\begin{aligned} \varDelta _+ U_j^{n+1}\le & {} \varDelta _+U_j^n -\lambda q'(U_{j}^n) \varDelta _+ U^n_{j} - {{\lambda \mu } \over 2} ( \varDelta _+ U^n_{j})^2 \nonumber \\&\quad +\,\lambda q'(U_{j}^n) \varDelta _+ U^+_{j-1} - {{\lambda \mu } \over 2} ( \varDelta _+ U^+_{j-1})^2 \nonumber \\\le & {} \left( 1 - \lambda q'(U_{j}^n)\right) \varDelta _+ U^n_{j} + \lambda q'(U_{j}^n) \varDelta _+ U^+_{j-1} \nonumber \\&\quad -\, {{\lambda \mu } \over 4} \left( ( \varDelta _+ U^n_{j})^2 + ( \varDelta _+ U^+_{j-1})^2\right) . \end{aligned}$$
(A.15)

Due to the CFL condition, the first two terms are a convex combination of \(\varDelta _+ U^n_{j}, \varDelta _+ U^+_{j-1}\), and

$$\begin{aligned} ( \varDelta _+ U^n_{j})^2 + ( \varDelta _+ U^+_{j-1})^2 \ge \left( \max \left( \varDelta _+ U^n_{j} , \varDelta _+ U^+_{j-1}\right) \right) ^2. \end{aligned}$$

Combining these observations with (A.15), and recalling \(a= \lambda \mu /4\), results in

$$\begin{aligned} \begin{aligned} \varDelta _+ U_j^{n+1}&\le \max \left( \varDelta _+ U^n_{j}, \varDelta _+ U^+_{j-1}\right) - a \left( \max \left( \varDelta _+ U^n_{j} , \varDelta _+ U^+_{j-1}\right) \right) ^2.\quad \end{aligned} \end{aligned}$$
(A.16)

It follows from \(U_{j-1}^n \le U_j^n\) that \(0 \le \varDelta _+ U^+_{j-1} \le \varDelta _+U_{j-1}^n\), and then by monotonicity of \(\psi (\cdot ; a)\) the inequality (A.16) becomes

$$\begin{aligned} \begin{aligned} \varDelta _+ U_j^{n+1}&\le \max \left( \varDelta _+ U^n_{j}, \varDelta _+ U^n_{j-1}\right) - a \left( \max \left( \varDelta _+ U^n_{j} , \varDelta _+ U^n_{j-1}\right) \right) ^2. \end{aligned} \end{aligned}$$

Two more applications of monotonicity of \(\psi \) give

$$\begin{aligned} \varDelta _+ U_j^{n+1}&\le \max \left( D_{j-1}^n,D_j^n,D_{j+1}^n\right) - a \left( \max \left( D_{j-1}^n,D_j^n,D_{j+1}^n \right) \right) ^2\nonumber \\&= \psi \left( \max \left( D_{j-1}^n,D_j^n,D_{j+1}^n\right) ;a \right) . \end{aligned}$$
(A.17)

Finally, we are guaranteed that the right side of (A.17) is nonnegative, so the left side of (A.17) can be replaced by \(D_j^{n+1}\), and the proof of Case 1 is complete.

Case 2 \( U_j^n, U_{j+1}^n \le u^*\). The proof of this case is similar to Case 1 and we omit it.

Case 3 \( U_j^n<u^* < U_{j+1}^n \). With the assumption \(\varDelta _+ U_{j-1}^n \ge 0\), \(\varDelta _+ U_{j+1}^n \ge 0\), we also have \(U_{j-1}^n \le U_j^n<u^* < U_{j+1}^n \le U_{j+2}^n\). Using this ordering, (A.14) becomes

$$\begin{aligned} \begin{aligned} \varDelta _+ U_j^{n+1}&\le \varDelta _+ U_j^n - {{\lambda \mu }\over 2} \left( (U_{j+1}^n - u^*)^2 + (u^* - U_{j}^n)^2\right) \\&\le \varDelta _+ U_j^n - {{\lambda \mu } \over 4} (\varDelta _+U_j^n)^2\\&= \psi (\varDelta _+ U_j^n;a), \end{aligned} \end{aligned}$$

where we have used the inequality \((\alpha +\beta )^2 \le 2(\alpha ^2+\beta ^2)\). The proof of this case is completed by using the monotonicity property of \(\psi \) as in the proof of Case 1.

Case 4 \( U_{j+1}^n<u^* < U_{j}^n \). Using the identity \(\varDelta _+ U_j^n = \varDelta _+U_j^+ + \varDelta _+U_j^-\), the inequality (A.14) becomes

$$\begin{aligned}&\varDelta _+ U_j^{n+1} \le \left( 1 + \lambda q'_-(U_{j+1}^n)\right) \varDelta _+ U^-_{j} - \lambda q'_-(U_{j+1}^n) \varDelta _+ U^-_{j+1} \nonumber \\&\quad - {{\lambda \mu } \over 2}\left( ( \varDelta _+ U^-_{j})^2 + \varDelta _+ U^-_{j+1})^2 \right) \nonumber \\&\quad +\left( 1 - \lambda q'_+(U_{j}^n)\right) \varDelta _+ U^+_{j} + \lambda q'_+(U_{j}^n) \varDelta _+ U^+_{j-1} \nonumber \\&\quad - {{\lambda \mu } \over 2}\left( ( \varDelta _+ U^+_{j})^2 + ( \varDelta _+ U^+_{j-1})^2\right) . \end{aligned}$$
(A.18)

The CFL condition, along with \( U_{j+1}^n<u^* < U_{j}^n \), results in

$$\begin{aligned} \left( 1 + \lambda q'_-(U_{j+1}^n)\right) \varDelta _+ U^-_{j} \le 0, \left( 1 - \lambda q'_+(U_{j}^n)\right) \varDelta _+ U^+_{j} \le 0, \end{aligned}$$

and so we can replace (A.18):

$$\begin{aligned} \varDelta _+ U_j^{n+1}\le & {} - \lambda q'_-(U_{j+1}^n) \varDelta _+ U^-_{j+1} - {{\lambda \mu } \over 2}\left( ( \varDelta _+ U^-_{j})^2 + \varDelta _+ U^-_{j+1})^2 \right) \nonumber \\&\quad +\, \lambda q'_+(U_{j}^n) \varDelta _+ U^+_{j-1} - {{\lambda \mu } \over 2}\left( ( \varDelta _+ U^+_{j})^2 + ( \varDelta _+ U^+_{j-1})^2\right) \nonumber \\\le & {} - \lambda q'_-(U_{j+1}^n) \varDelta _+ U^-_{j+1} + \lambda q'_+(U_{j}^n) \varDelta _+ U^+_{j-1} \nonumber \\&\quad -{{\lambda \mu } \over 4}\left( (\varDelta _+ U^-_{j+1})^2 + ( \varDelta _+ U^+_{j-1})^2 \right) . \end{aligned}$$
(A.19)

As a result of our assumption that \(\varDelta _+ U_{j-1}^n, \varDelta _+ U_{j+1}^n \ge 0\), we have

$$\begin{aligned} 0 \le \varDelta _+ U^-_{j+1} \le \varDelta _+ U_{j+1}^n, \quad 0 \le \varDelta _+ U^+_{j-1} \le \varDelta _+ U_{j-1}^n. \end{aligned}$$
(A.20)

Invoking the CFL condition again, from (A.19) and (A.20), along with \(a=\lambda \mu /4\), we get

$$\begin{aligned} \begin{aligned} \varDelta _+ U_j^{n+1}&\le {1 \over 2} \left( \varDelta _+ U^-_{j+1} + \varDelta _+ U^+_{j-1} \right) - a\left( (\varDelta _+ U^-_{j+1})^2 + ( \varDelta _+ U^+_{j-1})^2 \right) \\&\le \max (\varDelta _+ U^-_{j+1}, \varDelta _+ U^+_{j-1}) - a\left( \max (\varDelta _+ U^-_{j+1} , \varDelta _+ U^+_{j-1})\right) ^2 .\\ \end{aligned} \end{aligned}$$

The proof of this case is completed by using the monotonicity of \(\psi (\cdot ;a)\).

Part 3. Proof for the Godunov flux Under the assumptions stated at the beginning of this appendix, the Godunov flux \({\bar{q}}(v,u)\) is identical to the EO flux \({\bar{p}}(v,u)\), except for the case where \(v<u^*<u\), and in that case

$$\begin{aligned} {\bar{q}}(v,u) = \max (q(v),q(u)) \le q(v)+q(u) = {\bar{p}}(v,u). \end{aligned}$$

Thus in all cases we have

$$\begin{aligned} {\bar{q}}(v,u) \le {\bar{p}}(v,u). \end{aligned}$$
(A.21)

For the Godunov scheme the differences evolve according to

$$\begin{aligned} \varDelta _+U_j^{n+1} = \varDelta _+U_j^n - \lambda \left( {\bar{q}}(U_{j+2}^n,U_{j+1}^n) -2{\bar{q}}(U_{j+1}^n,U_j^n) +{\bar{q}}(U_{j}^n,U_{j-1}^n) \right) . \end{aligned}$$

We assumed that \(U_{j+1}^n \le U_{j+2}^n\), \(U_{j-1}^n \le U_{j}^n\), and so

$$\begin{aligned} {\bar{q}}(U_{j+2}^n,U_{j+1}^n) = {\bar{p}}(U_{j+2}^n,U_{j+1}^n), \quad {\bar{q}}(U_{j}^n,U_{j-1}^n) = {\bar{p}}(U_{j}^n,U_{j-1}^n). \end{aligned}$$

Applying these identities, along with (A.21) for the \(2{\bar{q}}(U_{j+1}^n,U_j^n)\) term, we have

$$\begin{aligned} \varDelta _+U_j^{n+1} \le \varDelta _+U_j^n - \lambda \left( {\bar{p}}(U_{j+2}^n,U_{j+1}^n) -2{\bar{p}}(U_{j+1}^n,U_j^n) +{\bar{p}}(U_{j}^n,U_{j-1}^n) \right) . \end{aligned}$$

The conclusion now follows directly from Part 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Towers, J.D. Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities. Numer. Math. 139, 939–969 (2018). https://doi.org/10.1007/s00211-018-0957-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0957-3

Mathematics Subject Classification

Navigation