Skip to main content
Log in

A Godunov type scheme and error estimates for scalar conservation laws with Panov-type discontinuous flux

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This article concerns a scalar conservation law where the flux is of Panov type and may contain spatial discontinuities. We define a notion of entropy solution and discuss the existence via Godunov type finite volume approximation. We further show that our numerical scheme converges the entropy solution at an optimal rate of \({\mathcal {O}}(\sqrt{\varDelta t}).\) To the best of our knowledge, the error estimates of the numerical scheme are the first of its kind for conservation laws with discontinuous flux where spatial discontinuities can accumulate. We present numerical examples that illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adimurthi, J., Jaffré, G.D., Gowda, Veerappa: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–208 (2004)

    Article  MathSciNet  Google Scholar 

  2. Adimurthi, Dutta, R., Ghoshal, S.S., Veerappa Gowda, G.D.: Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux. Commun. Pure Appl. Math. 64(1), 84–115 (2011)

    Article  MathSciNet  Google Scholar 

  3. Adimurthi, S., Mishra, Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux functions. J. Hyperbolic Differ. Equ. 2, 783–837 (2005)

    Article  MathSciNet  Google Scholar 

  4. Adimurthi, S., Mishra, Veerappa Gowda, G.D.: Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function. Math. Comput. 76(259), 1219–1242 (2007)

    Article  MathSciNet  Google Scholar 

  5. Adimurthi, Veerappa Gowda, G.D.: Conservation law with discontinuous flux. J. Math. Kyoto Univ. 43–1, 27–70 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Aleksic, J., Mitrović, D.: On the compactness for scalar two dimensional scalar conservation law with discontinuous flux. Commun. Math. Sci. 7, 963–971 (2009)

    Article  MathSciNet  Google Scholar 

  7. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks medium. Comput. Geosci. 17(3), 551–572 (2013)

    Article  MathSciNet  Google Scholar 

  8. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of \(L^1\) dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27–86 (2011)

    Article  MathSciNet  Google Scholar 

  9. Andreianov, B., Mitrović, D., Darko: Entropy conditions for scalar conservation laws with discontinuous flux revisited. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 32, 1307–1335 (2015)

    Article  MathSciNet  Google Scholar 

  10. Audusse, E., Perthame, B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. Sect. A 135, 253–265 (2005)

    Article  MathSciNet  Google Scholar 

  11. Badwaik, J., Risebro, N.H., Klingenberg, C.: Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux. arXiv:1906.08991 (2019)

  12. Badwaik, J., Ruf, A.: Convergence rates of monotone schemes for conservation laws with discontinuous flux. SIAM J. Numer. Anal. 58, 607–629 (2020)

    Article  MathSciNet  Google Scholar 

  13. Baiti, P., Jenssen, H.K.: Well-posedness for a class of \(2\times 2\) conservation laws with \(L^{\infty }\) data. J. Differ. Equ. 140, 161–185 (1997)

    Article  Google Scholar 

  14. Bürger, R., García, A., Karlsen, K., Towers, J.: A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. 60(3–4), 387–425 (2008)

    Article  MathSciNet  Google Scholar 

  15. Bürger, R., Garcia, A., Karlsen, K.H., Towers, J.D.: On an extended clarifier-thickener model with singular source and sink terms. Eur. J. Appl. Math. 42817(3), 257–292 (2006)

    Article  MathSciNet  Google Scholar 

  16. Bürger, R., Karlsen, K.H., Risebro, N.H., Towers, J.D.: Well-posedness in \(BV_t\) and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 97, 25–65 (2004)

    Article  MathSciNet  Google Scholar 

  17. Bürger, R., Karlsen, K.H., Towers, J.D.: A conservation law with discontinuous flux modelling traffic flow with abruptly changing road surface conditions. Hyperbolic Probl. Theory Numer. Appl. 67, 455–464 (2009)

    Article  MathSciNet  Google Scholar 

  18. Cancès, C., Seguin, N.: Error estimate for Godunov approximation of locally constrained conservation laws. SIAM J. Numer. Anal. 50, 3036–3060 (2012)

    Article  MathSciNet  Google Scholar 

  19. Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)

    Article  MathSciNet  Google Scholar 

  20. Crandall, M.G., Majda, A.: The method of fractional steps for conservation laws. Numer. Math. 34, 285–314 (1980)

    Article  MathSciNet  Google Scholar 

  21. Crasta, G., De Cicco, V., De Philippis, G., Ghiraldin, F.: Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness. Arch. Ration. Mech. Anal. 221(2), 961–985 (2016)

    Article  MathSciNet  Google Scholar 

  22. Crasta, G., De Cicco, V., De Philippis, G.: Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux. Commun. Partial Differ. Equ. 40(4), 694–726 (2015)

    Article  MathSciNet  Google Scholar 

  23. Fjordholm, U.S., Lye, K.O.: Convergence rates of monotone schemes for conservation laws for data with unbounded total variation. J. Sci. Comput. 91(2), 1–16 (2022)

    Article  MathSciNet  Google Scholar 

  24. Ghoshal, S., Jana, A., Towers, J.: Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux. Numer. Math. 146(3), 629–659 (2020)

    Article  MathSciNet  Google Scholar 

  25. Ghoshal, S.S., Towers, J.D., Vaidya, G.: Well-posedness for conservation laws with spatial heterogeneities and a study of BV regularity, Preprint (2020). https://arxiv.org/pdf/2010.13695.pdf

  26. Ghoshal, S.S., Towers, J.D., Vaidya, G.: Convergence of a Godunov scheme for conservation laws with degeneracy and BV spatial flux and a study of Panov type fluxes, To appear in J. Hyperbolic Differ. Equ. (2022) https://arxiv.org/pdf/2011.10946.pdf

  27. Ghoshal, S.S.: Optimal results on TV bounds for scalar conservation laws with discontinuous flux. J. Differ. Equ. 258, 980–1014 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ghoshal, S.S.: BV regularity near the interface for nonuniform convex discontinuous flux. Netw. Heterog. Media 11(2), 331–348 (2016)

    Article  MathSciNet  Google Scholar 

  29. Graf, M., Kunzinger, M., Mitrović, D., Vujadinovic, D.: A vanishing dynamic capillarity limit equation with discontinuous flux. Angew. Math. Phys. 71, 201 (2020)

    Article  MathSciNet  Google Scholar 

  30. Holden, H., Karlsen, K.H., Lie, K.A., Risebro, N.H.: Splitting methods for partial differential equations with rough solutions. European Mathematical Society (2010)

  31. Holden, H., Karlsen, K. H., Mitrović, D.: Zero diffusion-dispersion-smoothing limits for a scalar conservation law with discontinuous flux function. Int. J. Differ. Equ., Art. ID 279818, 33 pp (2009)

  32. Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws. Springer. p. 152 (2015)

  33. Karlsen, K.H.: On the accuracy of a numerical method for two-dimensional scalar conservation laws based on dimensional splitting and front tracking, Preprint Series 30. Department of Mathematics , University of Oslo (1994)

  34. Karlsen, K.H., Rascle, M., Tadmor, E.: On the existence and compactness of a two-dimensional resonant system of conservation laws. Commun. Math. Sci. 5, 253–265 (2007)

    Article  MathSciNet  Google Scholar 

  35. Kuznetsov, N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16, 105–119 (1976)

    Article  Google Scholar 

  36. Leveque, R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press: ambridge, UK (2002)

  37. Panov, E.Y.: On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux. J. Hyperbolic Differ. Equ. 06, 525–548 (2009)

    Article  MathSciNet  Google Scholar 

  38. Panov, E.Y.: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Arch. Ration. Mech. Anal. 195(2), 643–673 (2009)

    Article  MathSciNet  Google Scholar 

  39. Sabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34, 2306–2318 (1997)

    Article  MathSciNet  Google Scholar 

  40. Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38, 681–698 (2000)

    Article  MathSciNet  Google Scholar 

  41. Towers, J.D.: An existence result for conservation laws having BV spatial flux heterogeneities—without concavity. J. Differ. Equ. 269, 5754–5764 (2020)

    Article  MathSciNet  Google Scholar 

  42. Venditti, D.A., Darmofal, D.L.: Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow. J. Comput. Phys. 164, 204–227 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First and last authors, would like to thank Department of Atomic Energy, Government of India, under Project No. 12-R &D-TFR-5.01-0520. First author would also like to acknowledge Inspire faculty-research grant DST/INSPIRE/04/2016/000237. We thank the anonymous referees for their careful reading of the paper and constructive inputs which improved the scope of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Sundar Ghoshal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, S.S., Towers, J.D. & Vaidya, G. A Godunov type scheme and error estimates for scalar conservation laws with Panov-type discontinuous flux. Numer. Math. 151, 601–625 (2022). https://doi.org/10.1007/s00211-022-01297-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01297-w

Mathematics Subject Classification

Navigation