Skip to main content

Advertisement

Log in

Abstract

Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin’s biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin’s role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin’s beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature’s palette holds remarkable solutions for enhancing our health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abdulkareem Aljumaily SA, Demir M, Elbe H, Yigitturk G, Bicer Y, Altinoz E (2021) Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. Environ Sci Pollut Res 28:65802–65813

    Article  CAS  Google Scholar 

  • Abdullaev FI (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med 227(1):20–25

    Article  CAS  Google Scholar 

  • Abdullaev FI, Espinosa-Aguirre JJ (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28(6):426–432

    Article  CAS  PubMed  Google Scholar 

  • Abou-Hany HO, Atef H, Said E, Elkashef HA, Salem HA (2018) Crocin mediated amelioration of oxidative burden and inflammatory cascade suppresses diabetic nephropathy progression in diabetic rats. Chem Biol Interact 284:90–100

    Article  CAS  PubMed  Google Scholar 

  • Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN et al (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 81(4):805–813

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Hasan MM, Heydari M, Rauf A, Bawazeer S, Abu-Izneid T et al (2020) Therapeutic potentials of crocin in medication of neurological disorders. Food Chem Toxicol 145:111739

    Article  CAS  PubMed  Google Scholar 

  • Ahrazem O, Rubio-Moraga A, López RC, Gómez-Gómez L (2010) The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors. J Exp Bot 61(1):105–119

    Article  CAS  PubMed  Google Scholar 

  • Ahrazem O, Argandoña J, Fiore A, Aguado C, Luján R, Rubio-Moraga Á et al (2018) Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis. Sci Rep 8(1):2843

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahrazem O, Diretto G, Argandoña Picazo J, Fiore A, Rubio-Moraga Á, Rial C et al (2019) The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene family in saffron. Front Plant Sci 10:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Akbari G, Mard SA, Dianat M (2019) Effect of crocin on cardiac antioxidants, and hemodynamic parameters after injuries induced by hepatic ischemia-reperfusion in rats. Iran J Basic Med Sci 22(3):277

    PubMed  PubMed Central  Google Scholar 

  • Algandaby MM (2018) Antifibrotic effects of crocin on thioacetamide-induced liver fibrosis in mice. Saudi J Biol Sci 25(4):747–754

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Yu L, Kousar S, Khalid W, Maqbool Z, Aziz A et al (2022) Crocin: functional characteristics, extraction, food applications and efficacy against brain related disorders. Front Nutr 9:1009807

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali Hammood Keelo RM, Elbe H, Bicer Y, Yigitturk G, Koca O, Karayakali M et al (2022) Treatment with crocin suppresses diabetic nephropathy progression via modulating TGF-β1 and oxidative stress in an experimental model of pinealectomized diabetic rats. Chem Biol Interact 351:109733

    Article  CAS  PubMed  Google Scholar 

  • Aligholipour M, Feizollahzadeh H, Ghaffari M, Jabbarzadeh F (2019) The effect of in-person and multimedia short message based education in telegram on fasting blood glucose and glycosylated hemoglobin in patients with insulin-dependent diabetes. Iranian Journal of Diabetes and Metabolism 18(2):64–70

    Google Scholar 

  • Altinoz E, Erdemli M, Gul M, Aksungur Z, Gul S, Bag H et al (2018) Neuroprotection against CCl4 induced brain damage with crocin in Wistar rats. Biotech Histochem 93(8):623–631

    Article  CAS  PubMed  Google Scholar 

  • Amin A, Bajbouj K, Koch A, Gandesiri M, Schneider-Stock R (2015) Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci 16(1):1544–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin A, Hamza AA, Daoud S, Khazanehdari K, Hrout AA, Baig B et al (2016) Saffron-based crocin prevents early lesions of liver cancer: in vivo, in vitro and network analyses. Recent Pat Anticancer Drug Discov 11(1):121–133

    Article  CAS  PubMed  Google Scholar 

  • Amin SN, El-Gamal EM, Rashed LA, Kamar SS, Haroun MA (2023) Inhibition of notch signalling and mesangial expansion by combined glucagon like peptide-1 agonist and crocin therapy in animal model of diabetic nephropathy. Arch Physiol Biochem 129(2):544–554

    Article  CAS  PubMed  Google Scholar 

  • Asai A, Nakano T, Takahashi M, Nagao A (2005) Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem 53(18):7302–7306

    Article  CAS  PubMed  Google Scholar 

  • Ashktorab H, Soleimani A, Singh G, Amin A, Tabtabaei S, Latella G et al (2019) Saffron: the golden spice with therapeutic properties on digestive diseases. Nutrients 11(5):943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS (2022) Detection of saffron’s main bioactive compounds and their relationship with commercial quality. Foods 11(20):3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azimi P, Ghiasvand R, Feizi A, Hosseinzadeh J, Bahreynian M, Hariri M et al (2016) Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: a randomized controlled clinical trial. Blood Press 25(3):133–140

    Article  CAS  PubMed  Google Scholar 

  • Azmand MJ, Rajaei Z (2021) Effects of crocin on spatial or aversive learning and memory impairments induced by lipopolysaccharide in rats. Avicenna J Phytomed 11(1):79–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA et al (2015) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16(1):698

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahashwan S, Hassan MH, Aly H, Ghobara MM, El-Beshbishy HA, Busati I (2015) Crocin mitigates carbon tetrachloride-induced liver toxicity in rats. Journal of Taibah University Medical Sciences 10(2):140–149

    Article  Google Scholar 

  • Bakshi HA, Hakkim FL, Sam S (2016) Molecular mechanism of crocin induced caspase mediated MCF-7 cell death: in vivo toxicity profiling and ex vivo macrophage activation. Asian Pac J Cancer Prev 17(3):1499–1506

    Article  PubMed  Google Scholar 

  • Bakshi HA, Zoubi MSA, Hakkim FL, Aljabali AAA, Rabi FA, Hafiz AA et al (2020) Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage. Nutrients 12(6):1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barari A, Shirali S, Amini S, Abbassi Daloii A, Golizade Gangraj P (2017) Effect of saffron extract and aerobic exercises on troponin T and heart-type fatty acid binding protein in type 2 diabetes patients. Iranian Journal of Diabetes and Obesity 9(1):45–53

    Google Scholar 

  • Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50(8):761–786

    Article  CAS  PubMed  Google Scholar 

  • Bawa S (2010) The significance of soy protein and soy bioactive compounds in the prophylaxis and treatment of osteoporosis. J Osteoporos 2010:891058

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedirian R, Neves MF, Oigman W, Gismondi RAOC, Pozzobon CR, Ladeira MCB et al (2016) Correlation between diastolic function and endothelial function in patients with type 2 diabetes and hypertension. The Open Cardiovascular Medicine Journal 10:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokelmann JM (2022) 66 - Saffron (Crocus sativus): stigma, petal. In: Bokelmann JM (ed) Medicinal herbs in primary care. Elsevier, pp 545–567

    Chapter  Google Scholar 

  • Boozari M, Hosseinzadeh H (2022) Crocin molecular signaling pathways at a glance: a comprehensive review. Phytother Res 36(10):3859–3884

    Article  CAS  PubMed  Google Scholar 

  • Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    Article  CAS  PubMed  Google Scholar 

  • Broadhead GK, Grigg JR, McCluskey P, Hong T, Schlub TE, Chang AA (2019) Saffron therapy for the treatment of mild/moderate age-related macular degeneration: a randomised clinical trial. Graefes Arch Clin Exp Ophthalmol 257(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Buffon MP, Sortica DA, Gerchman F, Crispim D, Canani LH (2015) FRMD3 gene: its role in diabetic kidney disease. A Narrative Review Diabetol Metab Syndr 7:118

    Article  PubMed  Google Scholar 

  • Buiatti S, Guglielmotti M, Bertin F, Bertoli S, Passaghe P (2024) Use of Friulan saffron in the production of craft beer. Eur Food Res Technol 250(1):325–335

    Article  CAS  Google Scholar 

  • Butt MS, Sultan MT (2011) Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 51(5):383–393

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 100(3):1126–1131

    Article  CAS  Google Scholar 

  • Campion CG, Sanchez-Ferras O, Batchu SN (2017) Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Can J Kidney Health Dis 4:2054358117705371

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54(3):973–979

    Article  CAS  PubMed  Google Scholar 

  • Castillo R, Fernández JA, Gómez-Gómez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139(2):674–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274

    Article  CAS  PubMed  Google Scholar 

  • Cenci-Goga BT, Torricelli R, Hosseinzadeh Gonabad Y, Ferradini N, Venanzoni R, Sechi P et al (2018) In vitro bactericidal activities of various extracts of saffron (Crocus sativus L.) stigmas from Torbat-e Heydarieh, Gonabad and Khorasan, Iran. Microbiol Res 9(1):7583

    Article  Google Scholar 

  • Cerdá-Bernad D, Valero-Cases E, Pastor J-J, Frutos MJ (2022) Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 62(12):3232–3249

    Article  PubMed  Google Scholar 

  • Chen L, Qi Y, Yang X (2015a) Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina. Ophthalmic Res 54(3):157–168

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y et al (2015b) Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res 4(6):775–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Tan S, Liu M, Li J (2018) LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand Cardiovasc J 52(6):335–339

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Su J, Liu Y, Gao T, Ji X, Li H et al (2023) Crocin ameliorates diabetic nephropathy through regulating metabolism, CYP4A11/PPARγ, and TGF-β/Smad pathways in mice. Curr Drug Metab 24:1–14

    Article  Google Scholar 

  • Christodoulou E, Grafakou M-E, Skaltsa E, Kadoglou N, Kostomitsopoulos N, Valsami G (2019) Preparation, chemical characterization and determination of crocetin’s pharmacokinetics after oral and intravenous administration of saffron (Crocus sativus L.) aqueous extract to C57/BL6J mice. J Pharm Pharmacol 71(5):753–764

    Article  CAS  PubMed  Google Scholar 

  • Cid-Pérez TS, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Avila-Sosa R (2021) The relation between drying conditions and the development of volatile compounds in saffron (Crocus sativus). Molecules 26(22):6954

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Alessandro AM, Mancini A, Lizzi AR, De Simone A, Marroccella CE, Gravina GL et al (2013) Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr Cancer 65(6):930–942

    Article  PubMed  Google Scholar 

  • Daneshvar A, Jouzdani AF, Firozian F, Asl SS, Mohammadi M, Ranjbar A (2022) Neuroprotective effects of crocin and crocin-loaded niosomes against the paraquat-induced oxidative brain damage in rats. Open Life Sci 17(1):1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dariushnejad H, Chodari L, Ghorbanzadeh V (2020) The combination effect of voluntary exercise and crocin on angiogenic miRNAs in high-fat diet/low-dose STZ-induced type2 diabetes in rats: miR-126 and miR-210. Pharmaceutical Sciences 26(4):379–385

    Article  CAS  Google Scholar 

  • Demurtas OC, Frusciante S, Ferrante P, Diretto G, Azad NH, Pietrella M et al (2018) Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiol 177(3):990–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, Zhong H, Qi Y, Cheng Y, Li W, Yan S et al (2013) Anti-arthritic effects of crocin in interleukin-1β-treated articular chondrocytes and cartilage in a rabbit osteoarthritic model. Inflamm Res 62(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Du P, Qian Z-Y, Yu W-P, Xing Y-X (2004) Study on pharmacokinetics and tissue distribution of crocetin in rats by RP-HPLC. Chinese Journal of Pharmaceutical Analysis. 24(2):149–152

    CAS  Google Scholar 

  • Duan H, Zhang Q, Liu J, Li R, Wang D, Peng W et al (2021) Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol Res 168:105599

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M (2006) Pharmacodynamic basis of herbal medicine: CRC Press 1:298–299

  • El-Maraghy SA, Rizk SM, Shahin NN (2015) Gastroprotective effect of crocin in ethanol-induced gastric injury in rats. Chem Biol Interact 229:26–35

    Article  CAS  PubMed  Google Scholar 

  • El-Sheikh AA, Mahmoud HA, El-Kordy EA, Abdelsattar AM, Rizk FH, El-Sharaby RM et al (2023) Crocin lessens desipramine-induced phospholipidosis biomarker levels via targeting oxidative stress-related PI3K/Akt/mTOR signaling pathways in the rat liver. Acta Bio Medica: Atenei Parmensis 94(2):e2023141

  • Elsherbiny NM, Eisa NH, El-Sherbiny M, Said E (2020) Chemo-preventive effect of crocin against experimentally-induced hepatocarcinogenesis via regulation of apoptotic and Nrf2 signaling pathways. Environ Toxicol Pharmacol 80:103494

    Article  CAS  PubMed  Google Scholar 

  • Ettehadi H, Mojabi SN, Ranjbaran M, Shams J, Sahraei H, Hedayati M et al (2013) Aqueous extract of saffron (Crocus sativus) increases brain dopamine and glutamate concentrations in rats. Journal of Behavioral and Brain Science 3:315–319

    Article  Google Scholar 

  • Falsini B, Piccardi M, Minnella A, Savastano C, Capoluongo E, Fadda A et al (2010) Influence of saffron supplementation on retinal flicker sensitivity in early age-related macular degeneration. Invest Ophthalmol vis Sci 51(12):6118–6124

    Article  PubMed  Google Scholar 

  • Farokhnia M, Shafiee Sabet M, Iranpour N, Gougol A, Yekehtaz H, Alimardani R et al (2014) Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double‐blind randomized clinical trial. Hum Psychopharmacol: Clin Exp 29(4):351–359

    Article  CAS  Google Scholar 

  • Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL et al (2014) Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int 2014:135048

    Article  PubMed  PubMed Central  Google Scholar 

  • Finley JW, Gao S (2017) A perspective on Crocus sativus L.(Saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem 65(5):1005–1020

    Article  CAS  PubMed  Google Scholar 

  • Formisano C, Mignola E, Senatore F, Bancheva S, Bruno M, Rosselli S (2008a) Volatile constituents of aerial parts of Centaurea sibthorpii (Sect. Carduiformes, Asteraceae) from Greece and their biological activity. Nat Prod Res 22(10):840–845

    Article  CAS  PubMed  Google Scholar 

  • Formisano C, Rigano D, Senatore F, Celik S, Bruno M, Rosselli S (2008b) Volatile constituents of aerial parts of three endemic Centaurea species from Turkey: Centaurea amanicola Hub.-Mor., Centaurea consanguinea DC. and Centaurea ptosimopappa Hayek and their antibacterial activities. Nat Prod Res 22(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A et al (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111(33):12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garavand F, Rahaee S, Vahedikia N, Jafari SM (2019) Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 89:26–44

    Article  CAS  Google Scholar 

  • Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Rubio-Moraga Á, Ahrazem O (2010) Understanding carotenoid metabolism in saffron stigmas: unravelling aroma and colour formation. Func Plant Sci Biotech 4:56–63

    Google Scholar 

  • Gresta F, Lombardo G, Siracusa L, Ruberto G (2009) Saffron, an alternative crop for sustainable agricultural systems: a review. Sustainable Agriculture 1:355–376

    Article  Google Scholar 

  • Guo ZL, Li MX, Li XL, Wang P, Wang WG, Du WZ et al (2021) Crocetin: a systematic review. Front Pharmacol 12:745683

    Article  CAS  PubMed  Google Scholar 

  • Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48(10):2803–2808

    Article  CAS  PubMed  Google Scholar 

  • Hashemi SA, Bathaie SZ, Mohagheghi MA (2020) Crocetin and crocin decreased cholesterol and triglyceride content of both breast cancer tumors and cell lines. Avicenna J Phytomedicine 10(4):384

    CAS  Google Scholar 

  • Hazman Ö, Aksoy L, Büyükben A (2016) Effects of crocin on experimental obesity and type-2 diabetes. Turkish J Med Sci 46(5):1593–1602

    Article  CAS  Google Scholar 

  • He S-Y, Qian Z-Y, Tang F-T, Wen N, Xu G-L, Sheng L (2005) Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci 77(8):907–921

    Article  CAS  PubMed  Google Scholar 

  • Heidari S, Mehri S, Hosseinzadeh H (2017) Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of Wistar rats. Iran J Basic Med Sci 20(11):1250

    PubMed  PubMed Central  Google Scholar 

  • Hemshekhar M, Sebastin Santhosh M, Sunitha K, Thushara RM, Kemparaju K, Rangappa KS et al (2012) A dietary colorant crocin mitigates arthritis and associated secondary complications by modulating cartilage deteriorating enzymes, inflammatory mediators and antioxidant status. Biochimie 94(12):2723–2733

    Article  CAS  PubMed  Google Scholar 

  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19(4):2690–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hire RR, Srivastava S, Davis MB, Kumar Konreddy A, Panda D (2017) Antiproliferative activity of crocin involves targeting of microtubules in breast cancer cells. Sci Rep 7:44984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooshmand Moghadam B, Rashidlamir A, Attarzadeh Hosseini SR, Gaeini AA, Kaviani M (2022) The effects of saffron (Crocus sativus L.) in conjunction with concurrent training on body composition, glycaemic status, and inflammatory markers in obese men with type 2 diabetes mellitus: a randomized double‐blind clinical trial. Br J Clin Pharmacol 88(7):3256–3271

    Article  CAS  PubMed  Google Scholar 

  • Hoshyar R, Mollaei H (2017) A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 69(11):1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Jahanian Z (2010) Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res 24(5):726–730

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Ziaee T, Sadeghi A (2008) The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine 15(6–7):491–495

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Shariaty VM, Sameni AK (2010) Acute and sub-acute toxicity of crocin, aconstituent of Crocus Sativus L. (Saffron), in mice and rats. Pharmacologyonline 2:943–951

    Google Scholar 

  • Hou Y, Lin S, Qiu J, Sun W, Dong M, Xiang Y et al (2020) NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 521(3):791–798

    Article  CAS  PubMed  Google Scholar 

  • Hsu HF, Houng JY, Kuo CF, Tsao N, Wu YC (2008) Glossogin, a novel phenylpropanoid from Glossogyne tenuifolia, induced apoptosis in A549 lung cancer cells. Food Chem Toxicol 46(12):3785–3791

    Article  CAS  PubMed  Google Scholar 

  • Huang A, Jia L (2021) Crocin enhances hypothermia therapy in hypoxic ischemia-induced brain injury in mice. Acta Neurol Belg 121(2):429–436

    Article  PubMed  Google Scholar 

  • Huang L, Wu J, Lian B, Zhang D, Zhai Y, Cao L (2023) Successful robot-assisted laparoscopic resection of pheochromocytoma in a patient with dilated cardiomyopathy: a case report on extremely high-risk anesthesia management. Medicine (baltimore) 102(41):e35467

    Article  PubMed  Google Scholar 

  • Hussain MA, Abogresha NM, AbdelKader G, Hassan R, Abdelaziz EZ, Greish SM (2021) Antioxidant and anti-inflammatory effects of crocin ameliorate doxorubicin-induced nephrotoxicity in rats. Oxidative Med Cell Longev 2021:8841726

  • Imenshahidi M, Hosseinzadeh H, Javadpour Y (2010) Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res 24(7):990–994

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka F, Shimazawa M, Umigai N, Ogishima H, Nakamura S, Tsuruma K et al (2013) Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice. Eur J Pharmacol 703(1–3):1–10

    Article  CAS  PubMed  Google Scholar 

  • Jaafarinia A, Kafami B, Sahebnasagh A, Saghafi F (2022) Evaluation of therapeutic effects of crocin in attenuating the progression of diabetic nephropathy: a preliminary randomized triple-blind placebo-controlled trial. BMC Complement Med Ther 22(1):262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbarpoor Bonyadi MH, Yazdani S, Saadat S (2014) The ocular hypotensive effect of saffron extract in primary open angle glaucoma: a pilot study. BMC Complement Altern Med 14:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Jafari-Sales A, Pashazadeh M (2020) Antibacterial effect of methanolic extract of saffron petal (Crocus sativus L.) on some standard gram positive and gram negative pathogenic bacteria in vitro. Current Perspectives on Medicinal and Aromatic Plants 3(1):1–7

    Google Scholar 

  • Jalali-Heravi M, Parastar H, Ebrahimi-Najafabadi H (2009) Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J Chromatogr A 1216(33):6088–6097

    Article  CAS  PubMed  Google Scholar 

  • Jalili C, Ghanbari A, Roshankhah S, Salahshoor MR (2020) Toxic effects of methotrexate on rat kidney recovered by crocin as a consequence of antioxidant activity and lipid peroxidation prevention. Iran Biomed J 24(1):39

    Article  PubMed  Google Scholar 

  • Jalili C, Tabatabaei H, Kakaberiei S, Roshankhah S, Salahshoor MR (2015) Protective role of crocin against nicotine-induced damages on male mice liver. Int J Prev Med 6(92):1–7

    Google Scholar 

  • Jam IN, Sahebkar AH, Eslami S, Mokhber N, Nosrati M, Khademi M et al (2017) The effects of crocin on the symptoms of depression in subjects with metabolic syndrome. Advances Clin Exp Med 26(6):925–930

    Article  Google Scholar 

  • Javandoost A, Afshari A, Nikbakht-Jam I, Khademi M, Eslami S, Nosrati M et al (2017) Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: a double blind randomized clinical trial. ARYA Atherosclerosis 13(5):245

    PubMed  PubMed Central  Google Scholar 

  • Ji A, Jia J, Xu Z, Li Y, Bi W, Ren F et al (2017) Transcriptome-guided mining of genes involved in crocin biosynthesis. Front Plant Sci 8:518

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y-Y, Zhang J-S, Zhang Y, Zhang Y-H (2004) Studies on the intestinal absorption of crocin in rats and determination of the partition coefficient. Journal-China Pharmaceutical University 35(3):283–284

    CAS  Google Scholar 

  • Jin W, Zhang Y, Xue Y, Han X, Zhang X, Ma Z et al (2020) Crocin attenuates isoprenaline-induced myocardial fibrosis by targeting TLR4/NF-κB signaling: connecting oxidative stress, inflammation, and apoptosis. Naunyn-Schmiedeberg’s Arch Pharmacol 393:13–23

    Article  CAS  Google Scholar 

  • Kanakis CD, Daferera DJ, Tarantilis PA, Polissiou MG (2004) Qualitative determination of volatile compounds and quantitative evaluation of safranal and 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. J Agric Food Chem 52(14):4515–4521

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Lee H, Jung E-S, Seyedian R, Jo M, Kim J et al (2012) Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem 135(4):2350–2358

    Article  CAS  PubMed  Google Scholar 

  • Kapucu A (2021) Crocin ameliorates oxidative stress and suppresses renal damage in streptozotocin induced diabetic male rats. Biotech Histochem 96(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Karimi G, Taiebi N, Hosseinzadeh H, Shirzad F (2004) Evaluation of subacute toxicity of aqueous extract of Crocus sativus L. stigma and petal in rats. J Med Plants 3(12):29–35

    Google Scholar 

  • Kassumeh S, Wertheimer CM, Ohlmann A, Priglinger SG, Wolf A (2021) Cytoprotective effect of crocin and trans-resveratrol on photodamaged primary human retinal pigment epithelial cells. Eur J Ophthalmol 31(2):630–637

    Article  PubMed  Google Scholar 

  • Kianbakht S (2008) A systematic review on pharmacology of saffron and its active constituents. Journal of Medicinal Plants 7(28):1–27

    Google Scholar 

  • Kim M, Cho C, Lee C, Ryu B, Kim S, Hur J et al (2021) Ishige okamurae ameliorates methylglyoxal-induced nephrotoxicity via reducing oxidative stress, RAGE protein expression, and modulating MAPK, Nrf2/ARE signaling pathway in mouse glomerular mesangial cells. Foods 10(9):2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korani S, Korani M, Sathyapalan T, Sahebkar A (2019) Therapeutic effects of crocin in autoimmune diseases: a review. BioFactors 45(6):835–843

    Article  CAS  PubMed  Google Scholar 

  • Koulakiotis NS, Gikas E, Iatrou G, Lamari FN, Tsarbopoulos A (2015) Quantitation of crocins and picrocrocin in saffron by hplc: application to quality control and phytochemical differentiation from other crocus taxa. Planta Med 81(07):606–612

    Article  CAS  PubMed  Google Scholar 

  • Laabich A, Vissvesvaran GP, Lieu KL, Murata K, McGinn TE, Manmoto CC et al (2006) Protective effect of crocin against blue light- and white light-mediated photoreceptor cell death in bovine and primate retinal primary cell culture. Invest Ophthalmol vis Sci 47(7):3156–3163

    Article  PubMed  Google Scholar 

  • Lachguer K, El Merzougui S, Boudadi I, Laktib A, Ben El Caid M, Ramdan B et al (2023) Major phytochemical compounds, in vitro antioxidant, antibacterial, and antifungal activities of six aqueous and organic extracts of Crocus sativus L. flower waste. Waste Biomass Valorization 14(5):1571–1587

    Article  CAS  PubMed  Google Scholar 

  • Lautenschläger M, Sendker J, Hüwel S, Galla H, Brandt S, Düfer M et al (2015) Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine 22(1):36–44

    Article  PubMed  Google Scholar 

  • Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:735

    PubMed  PubMed Central  Google Scholar 

  • Lee I-A, Lee JH, Baek N-I, Kim D-H (2005) Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 28(11):2106–2110

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Guo C, Hua L, Xue S, Yu D, Zhang C et al (2017) Crocin attenuates joint pain and muscle dysfunction in osteoarthritis rat. Inflammation 40(6):2086–2093

    Article  CAS  PubMed  Google Scholar 

  • Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237(1):208–219

    Article  CAS  PubMed  Google Scholar 

  • Li K, Li Y, Ma Z, Zhao J (2015) Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK. Int J Mol Med 36(5):1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu Y, Cao A, Li C, Wang L, Wu Q et al (2021) Crocin improves endothelial mitochondrial dysfunction via GPx1/ROS/KCa3. 1 signal axis in diabetes. Frontiers in Cell and Developmental Biology 9:651434

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Zheng B, Li J, Shi J, Chu L, Han X et al (2020) Crocin ameliorates arsenic trioxide-induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: reducing oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 131:110713

    Article  CAS  PubMed  Google Scholar 

  • Lin J-K, Wang C-J (1986) Protection of crocin dyes on the acute hepatic damage induced by aflatoxin B 1 and dimethylnitrosamine in rats. Carcinogenesis 7(4):595–599

    Article  CAS  PubMed  Google Scholar 

  • Linardaki ZI, Orkoula MG, Kokkosis AG, Lamari FN, Margarity M (2013) Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem Toxicol 52:163–170

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Yu S, Xu Z, Tan J, Wang B, Liu YG et al (2020) Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J 18:3278–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Chen L, Cheng H, Ao J, Xiong J, Liu X et al (2024) Virtual formalin-fixed and paraffin-embedded staining of fresh brain tissue via stimulated Raman CycleGAN model. Sci Adv. 10(13):eadn3426

    Article  CAS  PubMed  Google Scholar 

  • Llorens S, Mancini A, Serrano-Díaz J, D’Alessandro AM, Nava E, Alonso GL et al (2015) Effects of crocetin esters and crocetin from Crocus sativus L. on aortic contractility in rat genetic hypertension. Mol 20(9):17570–17584

    Article  CAS  Google Scholar 

  • Longobardi V, della Valle G, Iannaccone F, Calabria A, Di Vuolo G, Damiano S et al (2021) Effects of the antioxidant crocin on frozen-thawed buffalo (Bubalus bubalis) sperm. Italian Journal of Animal Science. 20(1):2095–2101

    Article  CAS  Google Scholar 

  • Lu P, Lin H, Gu Y, Li L, Guo H, Wang F et al (2015) Antitumor effects of crocin on human breast cancer cells. Int J Clin Exp Med 8(11):20316–20322

    CAS  PubMed  Google Scholar 

  • Luyong Z, Zhenzhou J, Yuping C, Xiaochen Z (2000) Thirteen-week Veinal toxicity study of crocins in beagle dogs. CHINESE JOURNAL OF BIOCHEMICAL PHARMACEUTICS 21(6):280–283

    Google Scholar 

  • Lv B, Chen T, Xu Z, Huo F, Wei Y, Yang X (2016a) Crocin protects retinal ganglion cells against H2O2-induced damage through the mitochondrial pathway and activation of NF-κB. Int J Mol Med 37(1):225–232

    Article  CAS  PubMed  Google Scholar 

  • Lv B, Huo F, Zhu Z, Xu Z, Dang X, Chen T et al (2016b) Crocin upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling and inhibiting lipopolysaccharide-induced microglial activation. Neurochem Res 41(8):1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Maggi L, Carmona M, Kelly SD, Marigheto N, Alonso GL (2011) Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas) - preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. Food Chem 128(2):543–548

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  • Manzoor MF, Hussain A, Sameen A, Sahar A, Khan S, Siddique R et al (2021) Novel extraction, rapid assessment and bioavailability improvement of quercetin: a review. Ultrason Sonochem 78:105686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqsood M, Sharif S, Naz S, Farasat T, Manzoor F, Cheema M et al (2023) Expression of pro-inflammatory cytokines (IL-6 & IL-18) exacerbate the risk of diabetic nephropathy in the Pakistani population. Mol Biol Rep 50(4):3249–3257

    Article  CAS  PubMed  Google Scholar 

  • Margaritis I, Angelopoulou K, Lavrentiadou S, Mavrovouniotis IC, Tsantarliotou M, Taitzoglou I et al (2020) Effect of crocin on antioxidant gene expression, fibrinolytic parameters, redox status and blood biochemistry in nicotinamide-streptozotocin-induced diabetic rats. Journal of Biological Research-Thessaloniki 27:1–15

    Article  Google Scholar 

  • Markowska A, Koziorowski D, Szlufik S (2023) Microglia and stem cells for ischemic stroke treatment-mechanisms, current status, and therapeutic challenges. Front Biosci (landmark Ed) 28(10):269

    Article  CAS  PubMed  Google Scholar 

  • Mashmoul M, Azlan A, Mohtarrudin N, Mohd Yusof BN, Khaza’ai H, Khoo HE et al (2016) Protective effects of saffron extract and crocin supplementation on fatty liver tissue of high-fat diet-induced obese rats. BMC Complement Altern Med 16:1–7

    Article  Google Scholar 

  • McConnell BB, Yang VW (2009) The Role of Inflammation in the Pathogenesis of Colorectal Cancer. Curr Colorectal Cancer Rep 5(2):69–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Milajerdi A, Jazayeri S, Shirzadi E, Hashemzadeh N, Azizgol A, Djazayery A et al (2018) The effects of alcoholic extract of saffron (Crocus satious L.) on mild to moderate comorbid depression-anxiety, sleep quality, and life satisfaction in type 2 diabetes mellitus: a double-blind, randomized and placebo-controlled clinical trial. Complement Ther Med 41:196–202

    Article  PubMed  Google Scholar 

  • Mir MA, Ganai SA, Mansoor S, Jan S, Mani P, Masoodi KZ et al (2020) Isolation, purification and characterization of naturally derived crocetin beta-d-glucosyl ester from Crocus sativus L. against breast cancer and its binding chemistry with ER-alpha/HDAC2. Saudi J Biol Sci 27(3):975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moallem SA, Hariri AT, Mahmoudi M, Hosseinzadeh H (2014) Effect of aqueous extract of Crocus sativus L.(saffron) stigma against subacute effect of diazinon on specific biomarkers in rats. Toxicol Ind Health 30(2):141–146

    Article  PubMed  Google Scholar 

  • Moghaddasi MS (2010) Saffron chemicals and medicine usage. J Med Plants Res 4(6):427–430

    CAS  Google Scholar 

  • Mohamadpour AH, Ayati Z, Parizadeh MR, Rajbai O, Hosseinzadeh H (2013) Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci 16(1):39

    PubMed  PubMed Central  Google Scholar 

  • Mohammadi Y, Zangooei M, Salmani F, Farimani AR (2023a) Effect of crocin and losartan on biochemical parameters and genes expression of FRMD3 and BMP7 in diabetic rats. Turk J Med Sci 53(1):10–18

    Article  PubMed  Google Scholar 

  • Mohammadi Y, Zangooei M, Zardast M, Mamashli M, Rezaei Farimani A (2023b) The effect of crocin and losartan on TGF-β gene expression and histopathology of kidney tissue in a rat model of diabetic nephropathy. Avicenna J Phytomed 13(2):189–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadzadeh L, Hosseinzadeh H, Abnous K, Razavi BM (2018) Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ Sci Pollut Res 25:4904–4914

    Article  CAS  Google Scholar 

  • Mohammadzadeh L, Abnous K, Razavi BM, Hosseinzadeh H (2020) Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects. Nutr Neurosci 23(3):221–236

    Article  CAS  PubMed  Google Scholar 

  • Mok IK, Nguyen TTH, Kim DH, Lee JW, Lim S, Jung HY et al (2020) Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure. Enzyme Microb Technol 140:109630

    Article  CAS  PubMed  Google Scholar 

  • Moraga AR, Nohales PF, Pérez JA, Gómez-Gómez L (2004) Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219(6):955–966

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Safari S, Feizipour S, Sadr S (2019) Crocin may be useful to prevent or treatment of alcohol induced neurodegeneration and neurobehavioral sequels via modulation of CREB/BDNF and Akt/GSK signaling pathway. Med Hypotheses 124:21–25

    Article  CAS  PubMed  Google Scholar 

  • Motamedrad M, Shokouhifar A, Hemmati M, Moossavi M (2019) The regulatory effect of saffron stigma on the gene expression of the glucose metabolism key enzymes and stress proteins in streptozotocin-induced diabetic rats. Research in Pharmaceutical Sciences 14(3):255

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U et al (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648(1–3):110–116

    Article  CAS  PubMed  Google Scholar 

  • Nikbakht-Jam I, Khademi M, Nosrati M, Eslami S, Foroutan-Tanha M, Sahebkar A et al (2016) Effect of crocin extracted from saffron on pro-oxidant–anti-oxidant balance in subjects with metabolic syndrome: a randomized, placebo-controlled clinical trial. European Journal of Integrative Medicine 8(3):307–312

    Article  Google Scholar 

  • Noureini SK, Wink M (2012) Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pac J Cancer Prev 13(5):2305–2309

    Article  PubMed  Google Scholar 

  • Olivier S, Robe P, Bours V (2006) Can NF-kappaB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 72(9):1054–1068

    Article  CAS  PubMed  Google Scholar 

  • Oruc S, Gönül Y, Tunay K, Oruc OA, Bozkurt MF, Karavelioğlu E et al (2016) The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life Sci 154:79–86

    Article  CAS  PubMed  Google Scholar 

  • Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M et al (2006) Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 54(23):8762–8768

    Article  CAS  PubMed  Google Scholar 

  • Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 219(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Parsi A, Torkashvand M, Hajiani E, Rahimlou M, Sadeghi N (2020) The effects of crocus sativus extract on serum lipid profile and liver enzymes in patients with non-alcoholic fatty liver disease: a randomized placebo-controlled study. Obesity Medicine 17:100165

    Article  Google Scholar 

  • Pereira J, Pereira J, Câmara JS (2011) Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile–identification of novel compounds. Talanta 83(3):899–906

    Article  CAS  PubMed  Google Scholar 

  • Peyravi A, Yazdanpanahi N, Nayeri H, Hosseini SA (2020) The effect of endurance training with crocin consumption on the levels of MFN2 and DRP1 gene expression and glucose and insulin indices in the muscle tissue of diabetic rats. J Food Biochem 44(2):e13125

    Article  PubMed  Google Scholar 

  • Pitsikas N (2016) Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Mol 21(3):303

    Article  Google Scholar 

  • Primavilla S, Pagano C, Roila R, Branciari R, Ranucci D, Valiani A et al (2022) Antibacterial activity of Crocus sativus L. petals extracts against foodborne pathogenic and spoilage microorganisms, with a special focus on Clostridia. Life (Basel) 13(1):60

  • Qi Y, Chen L, Zhang L, Liu W-B, Chen X-Y, Yang X-G (2013) Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway. Exp Eye Res 107:44–51

    Article  CAS  PubMed  Google Scholar 

  • Qian Z, Fu J, Pan Y (1996) The pharmacokinetics of crocin-I in rats. Journal-China Pharmaceutical University 27:755–757

    CAS  Google Scholar 

  • Radmehr V, Ahangarpour A, Mard SA, Khorsandi L (2022) Crocin attenuates endoplasmic reticulum stress in methylglyoxal-induced diabetic nephropathy in male mice: MicroRNAs alterations and glyoxalase 1-Nrf2 signaling pathways. Iran J Basic Med Sci 25(11):1341–1348

    PubMed  PubMed Central  Google Scholar 

  • Rahaman A, Kumari A, Farooq MA, Zeng X-A, Hassan S, Khalifa I et al (2021) Novel extraction techniques: an effective way to retrieve the bioactive compounds from saffron (Crocus sativus). Food Rev Intl 1–29:2655–2683

    Google Scholar 

  • Rajabi A, Akbarnejad A, Siahkouhian M, Yari M (2019) Effect of saffron supplementation and exercise training on blood pressure, pulmonary function and spirometery indicators in obese and overweight women affected by type 2 diabetes. Journal of Gorgan University of Medical Sciences 21(2):59–69

    Google Scholar 

  • Rajaei Z, Hadjzadeh M-A-R, Nemati H, Hosseini M, Ahmadi M, Shafiee S (2013) Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 16(3):206–210

    Article  CAS  PubMed  Google Scholar 

  • Rajaei Z, Hosseini M, Alaei H (2016) Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease. Arq Neuropsiquiatr 74:723–729

    Article  CAS  PubMed  Google Scholar 

  • Rashedinia M, Lari P, Abnous K, Hosseinzadeh H (2015) Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain. Acta Neurobiol Exp 75(2):208–219

    Article  Google Scholar 

  • Razavi M, Hosseinzadeh H, Abnous K, Motamedshariaty VS, Imenshahidi M (2013) Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci 16(1):64

    PubMed  PubMed Central  Google Scholar 

  • Razavi BM, Hosseinzadeh H, Abnous K, Khoei A, Imenshahidi M (2016) Protective effect of crocin against apoptosis induced by subchronic exposure of the rat vascular system to diazinon. Toxicol Ind Health 32(7):1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Rezaee R, Jamialahmadi K, Zanjani BR, Mahmoudi M, Abnous K, Rabe SZT et al (2014) Crocin effects on human myeloma cells regarding intracellular redox state, DNA fragmentation, and apoptosis or necrosis profile. Jundishapur Journal of Natural Pharmaceutical Products 9(4):e20131

  • Rios J, Recio M, Giner R, Manez S (1996) An update review of saffron and its active constituents. Phytother Res 10(3):189–193

    Article  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D et al (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93

    Article  CAS  PubMed  Google Scholar 

  • Roshanravan B, Samarghandian S, Ashrafizadeh M, Amirabadizadeh A, Saeedi F, Farkhondeh T (2022) Metabolic impact of saffron and crocin: an updated systematic and meta-analysis of randomised clinical trials. Arch Physiol Biochem 128(3):666–678

    Article  CAS  PubMed  Google Scholar 

  • Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H (2017) Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 55(3):206–213

    Article  PubMed  Google Scholar 

  • Salama RM, Abdel-Latif GA, Abbas SS, Hekmat M, Schaalan MF (2020) Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 164:107900

    Article  CAS  PubMed  Google Scholar 

  • Salari R, Vazirzadeh B (2012) Effect of storage time on physiochemical and microbial properties of saffron. J Food Chem 2:61–68

    Google Scholar 

  • Samarghandian S, Azimi-Nezhad M, Farkhondeh T (2016a) Crocin attenuate tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine 88:20–28

    Article  CAS  PubMed  Google Scholar 

  • Samarghandian S, Azimi-Nezhad M, Samini F, Farkhondeh T (2016b) The role of saffron in attenuating age-related oxidative damage in rat hippocampus. Recent Pat Food Nutr Agric 8(3):183–189

    CAS  Google Scholar 

  • Samarghandian S, Farkhondeh T (2020) Saffron and neurological disorders. Saffron 1:103–116

    Article  Google Scholar 

  • Sánchez AM, Carmona M, Jarén-Galán M, Mosquera MI, Alonso GL (2011) Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. J Agric Food Chem 59(1):249–255

    Article  PubMed  Google Scholar 

  • Sarshoori JR, Asadi MH, Mohammadi MT (2014) Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iran J Basic Med Sci 17(11):895

    PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr 157(13–14):315–319

    Article  PubMed  Google Scholar 

  • Sepahi S, Golfakhrabadi M, Bonakdaran S, Lotfi H, Mohajeri SA (2022) Effect of crocin on diabetic patients: a placebo-controlled, triple-blinded clinical trial. Clin Nutr ESPEN 50:255–263

    Article  PubMed  Google Scholar 

  • Serrano-Díaz J, Sánchez AM, Martínez-Tomé M, Winterhalter P, Alonso GL (2013) A contribution to nutritional studies on Crocus sativus flowers and their value as food. J Food Compos Anal 31(1):101–108

    Article  Google Scholar 

  • Shen QQ, Jv XH, Ma XZ, Li C, Liu L, Jia WT et al (2024) Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson’s disease. Acta Pharmacol Sin 45(2):268–281

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Qian Z, Zheng S, Xi L (2006) Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol 543(1–3):116–122

    Article  CAS  PubMed  Google Scholar 

  • Shirali S, Zahra Bathaie S, Nakhjavani M (2013) Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother Res 27(7):1042–1047

    Article  CAS  PubMed  Google Scholar 

  • Singla RK, Bhat G (2011) Crocin: an overview. Indo Global J Pharm 1(4):281–286

    Article  CAS  Google Scholar 

  • Skladnev NV, Ganeshan V, Kim JY, Burton TJ, Mitrofanis J, Stone J et al (2016) Widespread brain transcriptome alterations underlie the neuroprotective actions of dietary saffron. J Neurochem 139(5):858–871

    Article  CAS  PubMed  Google Scholar 

  • Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P (2020) Nuclear factor erythroid 2-related factor 2 in regulating cancer metabolism. Antioxid Redox Signal 33(13):966–997

    Article  PubMed  PubMed Central  Google Scholar 

  • Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H et al (2007) Pharmacological activities of crocin in saffron. J Nat Med 61:102–111

    Article  CAS  Google Scholar 

  • Song Y-n, Wang Y, Zheng Y-h, Liu T-l, Zhang C (2021) Crocins: a comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia 153:104969

    Article  CAS  PubMed  Google Scholar 

  • Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taherifard MH, Shekari M, Mesrkanlou HA, Asbaghi O, Nazarian B, Khosroshahi MZ et al (2020) The effect of crocin supplementation on lipid concentrations and fasting blood glucose: a systematic review and meta-analysis and meta-regression of randomized controlled trials. Complement Ther Med 52:102500

    Article  PubMed  Google Scholar 

  • Talaei A, Moghadam MH, Tabassi SAS, Mohajeri SA (2015) Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: a randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord 174:51–56

    Article  CAS  PubMed  Google Scholar 

  • Tamaddonfard E, Hamzeh-Gooshchi N (2010) Effects of intraperitoneal and intracerebroventricular injection of crocin on acute corneal pain in rats. Phytother Res 24(10):1463–1467

    Article  CAS  PubMed  Google Scholar 

  • Umigai N, Murakami K, Ulit M, Antonio L, Shirotori M, Morikawa H et al (2011) The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine 18(7):575–578

    Article  CAS  PubMed  Google Scholar 

  • Vafaei S, Wu X, Tu J, Nematollahi-Mahani SN (2021) The effects of crocin on bone and cartilage diseases. Front Pharmacol 12:830331

    Article  CAS  PubMed  Google Scholar 

  • Vakili A, Einali MR, Bandegi AR (2014) Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis 23(1):106–113

    Article  PubMed  Google Scholar 

  • Valizadeh A, Sayadmanesh A, Asemi Z, Alemi F, Mahmoodpoor A, Yousefi B (2021) Regulatory roles of the notch signaling pathway in liver repair and regeneration: a novel therapeutic target. Curr Med Chem 28(41):8608–8626

    Article  CAS  PubMed  Google Scholar 

  • Vazifedan V, Mousavi SH, Sargolzaei J, Soleymanifard S, Fani Pakdel A (2017) Study of crocin & radiotherapy-induced cytotoxicity and apoptosis in the head and neck cancer (HN-5) cell line. Iran J Pharm Res 16(1):230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco-Velázquez MA, Li Z, Casimiro M, Loro E, Homsi N, Pestell RG (2011) Examining the role of cyclin D1 in breast cancer. Future Oncol 7(6):753–765

    Article  PubMed  Google Scholar 

  • Vernès L, Vian M, Chemat F (2020) Ultrasound and microwave as green tools for solid-liquid extraction. Liquid-phase Extraction 1:355–374

    Article  Google Scholar 

  • Wali AF, Alchamat HAA, Hariri HK, Hariri BK, Menezes GA, Zehra U et al (2020) Antioxidant, antimicrobial, antidiabetic and cytotoxic activity of Crocus sativus L. petals. Appl Sci 10(4):1519

    Article  CAS  Google Scholar 

  • Wang C-J, Hwang LS, Lin J (1984a) Reversible hepatic black pigmentation and enzyme alteration induced by prolonged feeding of high dose of crocin dyes in rats. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences 8(3):246–253

    CAS  PubMed  Google Scholar 

  • Wang CJ, Hwang LS, Lin JK (1984b) Reversible hepatic black pigmentation and enzyme alteration induced by prolonged feeding of high dose of crocin dyes in rats. Proc Natl Sci Counc Repub China B 8(3):246–253

    CAS  PubMed  Google Scholar 

  • Wang C, Cai X, Hu W, Li Z, Kong F, Chen X et al (2019a) Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer’s disease. Int J Mol Med 43(2):956–966

    CAS  PubMed  Google Scholar 

  • Wang H-F, Ma J-X, Shang Q-L, An J-B, Chen H-T, Wang C-X (2019b) Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy. Biomed Pharmacother 109:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Wang W, He P, Zhao D, Ye L, Dai L, Zhang X et al (2019c) Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Fact 18(1):120

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ke Y, Shu T (2020) Crocin has pharmacological effects against the pathological behavior of colon cancer cells by interacting with the STAT3 signaling pathway. Exp Ther Med 19(2):1297–1303

    CAS  PubMed  Google Scholar 

  • Wei D, Tang M, Gong W, Liu J, Qin L (2023) Aspirin inhibits brain metastasis of lung cancer via upregulation of tight junction protein expression in microvascular endothelial cells. Front Biosci (landmark Ed) 28(11):320

    Article  CAS  PubMed  Google Scholar 

  • Xi L, Qian Z, Du P, Fu J (2007) Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine 14(9):633–636

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Xiao Q, Xiong Z, Yu C, Zhou J, Fu Z (2019a) Crocin-I ameliorates the disruption of lipid metabolism and dysbiosis of the gut microbiota induced by chronic corticosterone in mice. Food Funct 10(10):6779–6791

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, He Q, Chen H, Lin Z, Xu Y, Yang C (2019b) Crocin ameliorates chronic obstructive pulmonary disease-induced depression via PI3K/Akt mediated suppression of inflammation. Eur J Pharmacol 862:172640

    Article  CAS  PubMed  Google Scholar 

  • Xu G-L, Qian Z-Y, Yu S-Q, Gong Z-N, Shen X-C (2006) Evidence of crocin against endothelial injury induced by hydrogen peroxide in vitro. J Asian Nat Prod Res 8(1–2):79–85

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Dong X (2017) Inhibition of inflammatory response by crocin attenuates hemorrhagic shock-induced organ damages in rats. J Interferon Cytokine Res 37(7):295–302

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ding N, Luo R, Zhang Q, Li Z, Zhao F et al (2023) Exosomes from young healthy human plasma promote functional recovery from intracerebral hemorrhage via counteracting ferroptotic injury. Bioact Mater 27:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaribeygi H, Mohammadi MT, Rezaee R, Sahebkar A (2018a) Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. J Cell Biochem 119(7):6080–6093

    Article  CAS  PubMed  Google Scholar 

  • Yaribeygi H, Mohammadi MT, Sahebkar A (2018b) Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomed Pharmacother 98:333–337

    Article  CAS  PubMed  Google Scholar 

  • Yarijani ZM, Najafi H, Madani SH (2016) Protective effect of crocin on gentamicin-induced nephrotoxicity in rats. Iran J Basic Med Sci 19(3):337

    PubMed  PubMed Central  Google Scholar 

  • Yeh CH, Chang CK, Cheng MF, Lin HJ, Cheng JT (2009) The antioxidative effect of bone morphogenetic protein-7 against high glucose-induced oxidative stress in mesangial cells. Biochem Biophys Res Commun 382(2):292–297

    Article  CAS  PubMed  Google Scholar 

  • Ying C, Zhou Z, Dai J, Wang M, Xiang J, Sun D et al (2022) Activation of the NLRP3 inflammasome by RAC1 mediates a new mechanism in diabetic nephropathy. Inflamm Res 71(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wang L, Ni S, Li D, Liu J, Chu HY et al (2022) Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun 13(1):4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaghloul MS, Said E, Suddek GM, Salem HA (2019) Crocin attenuates lung inflammation and pulmonary vascular dysfunction in a rat model of bleomycin-induced pulmonary fibrosis. Life Sci 235:116794

    Article  CAS  PubMed  Google Scholar 

  • Zeinali M, Zirak MR, Rezaee SA, Karimi G, Hosseinzadeh H (2019) Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: a review. Iran J Basic Med Sci 22(4):334

    PubMed  PubMed Central  Google Scholar 

  • Zeka K, Marrazzo P, Micucci M, Ruparelia KC, Arroo RR, Macchiarelli G et al (2020) Activity of antioxidants from Crocus sativus L. petals: potential preventive effects towards cardiovascular system. Antioxid 9(11):1102

    Article  CAS  Google Scholar 

  • Zhang MC, Liu HP, Demchik LL, Zhai YF, Yang DJ (2004) LIGHT sensitizes IFN-gamma-mediated apoptosis of HT-29 human carcinoma cells through both death receptor and mitochondria pathways. Cell Res 14(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Fan Z, Jin T (2017a) Crocin protects against cerebral-ischemia-induced damage in aged rats through maintaining the integrity of blood-brain barrier. Restor Neurol Neurosci 35(1):65–75

    CAS  PubMed  Google Scholar 

  • Zhang Y, Fei F, Zhen L, Zhu X, Wang J, Li S et al (2017b) Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. J Chromatogr B 1044:1–7

    Google Scholar 

  • Zhang L, Jing M, Liu Q (2021a) Crocin alleviates the inflammation and oxidative stress responses associated with diabetic nephropathy in rats via NLRP3 inflammasomes. Life Sci 278:119542

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu M, Krishna Mohan S, Hao Z (2021b) Crocin treatment promotes the oxidative stress and apoptosis in human thyroid cancer cells FTC-133 through the inhibition of STAT/JAK signaling pathway. J Biochem Mol Toxicol 35(1):e22608

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li H, Wang H, Zhang Q, Deng X, Zhang S et al (2024) Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke. Redox Biol 71:103086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2012) Pharmacokinetics of crocin-1 after oral administration in rats. Chin Pharm J 1(24):136–140

    Google Scholar 

  • Zheng Y-Q, Liu J-X, Wang J-N, Xu L (2007) Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 1138:86–94

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-q, Liu J-x, Li X-z, Xu L (2010) Effects and mechanism of Weinaokang (维脑康) on reperfusioninduced vascular injury to cerebral microvessels after global cerebral ischemia. Chin J Integr Med 16:145–150

    Article  PubMed  Google Scholar 

  • Zhou Y, Xu Q, Shang J, Lu L, Chen G (2019) Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. J Cell Physiol 234(10):17876–17885

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Sun X, Yang G, Ding N, Pan X, Zhong A et al (2023) Sex-specific differences in the association between steps per day and all-cause mortality among a cohort of adult patients from the United States with congestive heart failure. Heart Lung 62:175–179

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Deputy for Research and Technology of the Islamic Azad University of Tabriz for support of the study. We would like to thank the Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran for their assistance in this research.

Author information

Authors and Affiliations

Authors

Contributions

The authors have equally contributed to the conceptualization, data curation, original draft preparation, and editing work. The authors confirm that no paper mill and artificial intelligence were used.

Corresponding author

Correspondence to Rasoul Hashemkandi Asadi.

Ethics declarations

Ethics approval

The ethics committee of the Islamic Azad University of Tabriz approved the study protocol (code: IR.IAU.TABRIZ.REC.1401.005).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmousavi, L., Asadi, R.H., Zehsaz, F. et al. Potential therapeutic effects of crocin. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03131-6

Keywords

Navigation