Skip to main content
Log in

Crocin Attenuates Joint Pain and Muscle Dysfunction in Osteoarthritis Rat

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis is the most prevalent form of arthritis, affecting a large part of population. It has been reported that muscle weakness and inflammation contribute to osteoarthritis development and progression. Oxidative stress plays important roles in muscle dysfunction and inflammation induction. Crocin, a component of saffron, has excellent antioxidative property. However, it is unclear if crocin can be a potential medicine for osteoarthritis therapy. Osteoarthritis in rats was induced by meniscectomy (MNX) surgery. Then, rats were given with 30 mg/kg of crocin daily for 10 days after osteoarthritis induction. The parameters were determined 7 days after crocin administration. MNX surgery induced osteoarthritis in rats. Crocin treatment significantly decreased osteoarthritis-associated joint pain, decreased muscular interleukin-6 (IL-6) level, and increased citrate synthase (CS) activity, as well as myosin heavy chain (MHC) IIα expression. In addition, crocin reduced muscular lipid peroxidation (LPO) and Nrf2 expression and increased glutathione production and glutathione peroxidase activity. Finally, crocin inhibited the activity of JNK, but not ERK, to repress NF-κB activation and inflammation induction. Crocin attenuates osteoarthritis symptoms through alleviating oxidative stress and inflammation, suggesting that crocin is a potential medicine for osteoarthritis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loeser, R.F., S.R. Goldring, C.R. Scanzello, and M.B. Goldring. 2012. Osteoarthritis: a disease of the joint as an organ. Arthritis and Rheumatism 64: 1697–1707.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, et al. 2017. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research 5: 16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malfait, A.M. 2016. Osteoarthritis year in review 2015: biology. Osteoarthritis and Cartilage 24: 21–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pennock, A.T., C.M. Robertson, B.C. Emmerson, F.L. Harwood, and D. Amiel. 2007. Role of apoptotic and matrix-degrading genes in articular cartilage and meniscus of mature and aged rabbits during development of osteoarthritis. Arthritis and Rheumatism 56: 1529–1536.

    Article  PubMed  Google Scholar 

  5. Hsu, D.Z., P.Y. Chu, P.T. Wu, P.C. Shen, and I.M. Jou. 2015. Oxidative stress participates in quadriceps muscle dysfunction during the initiation of osteoarthritis in rats. International Journal of Clinical and Experimental Pathology 8: 12491–12499.

    PubMed  PubMed Central  Google Scholar 

  6. Callahan, D.M., M.S. Miller, A.P. Sweeny, T.W. Tourville, J.R. Slauterbeck, P.D. Savage, et al. 2014. Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner. The Journal of Physiology 592: 4555–4573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Milei, J., P. Forcada, C.G. Fraga, D.R. Grana, G. Iannelli, M. Chiariello, et al. 2007. Relationship between oxidative stress, lipid peroxidation, and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion. Cardiovascular Research 73: 710–719.

    Article  CAS  PubMed  Google Scholar 

  8. Ma, Q. 2013. Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 53: 401–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplowitz, N., T.Y. Aw, and M. Ookhtens. 1985. The regulation of hepatic glutathione. Annual Review of Pharmacology and Toxicology 25: 715–744.

    Article  CAS  PubMed  Google Scholar 

  10. Christodoulou, E., N.P. Kadoglou, N. Kostomitsopoulos, and G. Valsami. 2015. Saffron: a natural product with potential pharmaceutical applications. The Journal of Pharmacy and Pharmacology 67: 1634–1649.

    Article  CAS  PubMed  Google Scholar 

  11. Ding, Q., H. Zhong, Y. Qi, Y. Cheng, W. Li, S. Yan, et al. 2013. Anti-arthritic effects of crocin in interleukin-1beta-treated articular chondrocytes and cartilage in a rabbit osteoarthritic model. Inflammation Research 62: 17–25.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu, D.Z., P.Y. Chu, and I.M. Jou. 2016. Daily sesame oil supplement attenuates joint pain by inhibiting muscular oxidative stress in osteoarthritis rat model. The Journal of Nutritional Biochemistry 29: 36–40.

    Article  CAS  PubMed  Google Scholar 

  13. Mihara, M., S. Higo, Y. Uchiyama, K. Tanabe, and K. Saito. 2007. Different effects of high molecular weight sodium hyaluronate and NSAID on the progression of the cartilage degeneration in rabbit OA model. Osteoarthritis and Cartilage 15: 543–549.

    Article  CAS  PubMed  Google Scholar 

  14. Iacono, A., R. Gomez, J. Sperry, J. Conde, G. Bianco, R. Meli, et al. 2010. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis and Rheumatism 62: 1675–1682.

    Article  CAS  PubMed  Google Scholar 

  15. Avruch, J. 2007. MAP kinase pathways: the first twenty years. Biochimica et Biophysica Acta 1773: 1150–1160.

    Article  CAS  PubMed  Google Scholar 

  16. Berenbaum, F. 2004. Signaling transduction: target in osteoarthritis. Current Opinion in Rheumatology 16: 616–622.

    Article  PubMed  Google Scholar 

  17. Bostan, H.B., S. Mehri, and H. Hosseinzadeh. 2017. Toxicology effects of saffron and its constituents: a review. Iranian Journal of Basic Medical Sciences 20: 110–121.

    PubMed  PubMed Central  Google Scholar 

  18. Yu, S.P., and D.J. Hunter. 2016. Intra-articular therapies for osteoarthritis. Expert Opinion on Pharmacotherapy 17: 2057–2071.

    Article  CAS  PubMed  Google Scholar 

  19. Song, I.H., C.E. Althoff, K.G. Hermann, A.K. Scheel, T. Knetsch, G.R. Burmester, et al. 2009. Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Annals of the Rheumatic Diseases 68: 75–83.

    Article  CAS  PubMed  Google Scholar 

  20. Nam, K.N., Y.M. Park, H.J. Jung, J.Y. Lee, B.D. Min, S.U. Park, et al. 2010. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European Journal of Pharmacology 648: 110–116.

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda, S., H. Tsumura, and T. Torisu. 2005. Age-related quadriceps-dominant muscle atrophy and incident radiographic knee osteoarthritis. Journal of Orthopaedic Science 10: 121–126.

    Article  PubMed  Google Scholar 

  22. Bertaggia, E., G. Scabia, S. Dalise, F. Lo Verso, F. Santini, P. Vitti, et al. 2014. Haptoglobin is required to prevent oxidative stress and muscle atrophy. PloS One 9: e100745.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi, Y., M.V. Ivannikov, M.E. Walsh, Y. Liu, Y. Zhang, C.A. Jaramillo, et al. 2014. The lack of CuZnSOD leads to impaired neurotransmitter release, neuromuscular junction destabilization and reduced muscle strength in mice. PloS One 9: e100834.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ochiai, T., H. Shimeno, K. Mishima, K. Iwasaki, M. Fujiwara, H. Tanaka, et al. 2007. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica et Biophysica Acta 1770: 578–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Food and Drug Administration of Hebei Province 2014 Annual Food and Drug Safety Science and Technology Project Plan (PT2014026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Not applicable.

Funding

This study was supported by Food and Drug Administration of Hebei Province 2014 Annual Food and Drug Safety Science and Technology Project Plan (PT2014026).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Guo, C., Hua, L. et al. Crocin Attenuates Joint Pain and Muscle Dysfunction in Osteoarthritis Rat. Inflammation 40, 2086–2093 (2017). https://doi.org/10.1007/s10753-017-0648-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0648-8

Key Words

Navigation