Skip to main content
Log in

Commensurability growths of algebraic groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Fixing a subgroup \(\varGamma \) in a group G, the full commensurability growth function assigns to each n the cardinality of the set of subgroups \(\varDelta \) of G with \([\varGamma : \varGamma \cap \varDelta ][\varDelta : \varGamma \cap \varDelta ] \le n\). For pairs \(\varGamma \le G\), where G is a higher rank Chevalley group scheme defined over \({\mathbb {Z}}\) and \(\varGamma \) is an arithmetic lattice in G, we give precise estimates for the full commensurability growth, relating it to subgroup growth and a computable invariant that depends only on G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abért, M., Nikolov, N., Szegedy, B.: Congruence subgroup growth of arithmetic groups in positive characteristic. Duke Math. J. 117(2), 367–383 (2003)

    Article  MathSciNet  Google Scholar 

  2. Avni, N., Lim, S., Nevo, E.: On commensurator growth. Isr. J. Math. 188, 259–279 (2012)

    Article  MathSciNet  Google Scholar 

  3. Belolipetsky, M., Gelander, T., Lubotzky, A., Shalev, A.: Counting arithmetic lattices and surfaces. Ann. Math. (2) 172(3), 2197–2221 (2010)

    Article  MathSciNet  Google Scholar 

  4. Borel, A.: Density and maximality of arithmetic subgroups. J. Reine Angew. Math. 224, 78–89 (1966)

    Article  MathSciNet  Google Scholar 

  5. Borel, A., Harish-Chandra, : Arithmetic subgroups of algebraic groups. Ann. Math. 2(75), 485–535 (1962)

    Article  MathSciNet  Google Scholar 

  6. Borel, A., Prasad, G.: Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups. Inst. Hautes Études Sci. Publ. Math. 69, 119–171 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bou-Rabee, K., Skipper, R., Studenmund, D.: Commensurability growth of branch groups (2018). arXiv:1808.08660

  8. Bou-Rabee, K., Studenmund, D.: Arithmetic lattices in unipotent algebraic groups (2018, preprint). arXiv:1804.04973

  9. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972)

    Article  Google Scholar 

  10. du Sautoy, M.P.F.: Finitely generated groups, \(p\)-adic analytic groups and Poincaré series. Ann. Math. (2) 137(3), 639–670 (1993)

    Article  MathSciNet  Google Scholar 

  11. Grunewald, F.J., Segal, D., Smith, G.C.: Subgroups of finite index in nilpotent groups. Invent. Math. 93(1), 185–223 (1988)

    Article  MathSciNet  Google Scholar 

  12. Klopsch, B.: An introduction to compact \(p\)-adic Lie groups. In: Lectures on Profinite Topics in Group Theory, London Math. Soc. Stud. Texts, vol. 77, pp. 7–61. Cambridge Univ. Press, Cambridge (2011)

  13. Lubotzky, A., Nikolov, N.: Subgroup growth of lattices in semisimple Lie groups. Acta Math. 193(1), 105–139 (2004)

    Article  MathSciNet  Google Scholar 

  14. Lubotzky, A., Segal, D.: Subgroup Growth, Progress in Mathematics, vol. 212. Birkhäuser, Basel (2003)

    Book  Google Scholar 

  15. Lubotzky, A., Pyber, L., Shalev, A.: Discrete groups of slow subgroup growth. Isr. J. Math. 96(part B), 399–418 (1996)

    Article  MathSciNet  Google Scholar 

  16. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. 4(2), 1–62 (1969)

    Article  Google Scholar 

  17. Mertens, F.: Ueber einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math. 77, 289–338 (1874)

    MathSciNet  MATH  Google Scholar 

  18. Platonov, V., Rapinchuk, A.: Algebraic groups and number theory. In: Pure and Applied Mathematics, vol. 139. Academic, Boston (1994) (Translated from the 1991 Russian original by Rachel Rowen)

  19. Pyber, L.: Groups of intermediate subgroup growth and a problem of Grothendieck. Duke Math. J. 121(1), 169–188 (2004)

    Article  MathSciNet  Google Scholar 

  20. Steinberg, R.: Lectures on Chevalley Groups. Yale University, New Haven (1968). (Notes prepared by John Faulkner and Robert Wilson)

    MATH  Google Scholar 

  21. Voll, C.: A newcomer’s guide to zeta functions of groups and rings. In: Lectures on Profinite Topics in Group Theory, London Math. Soc. Stud. Texts, vol. 77, pp. 99–144. Cambridge Univ. Press, Cambridge (2011)

Download references

Acknowledgements

We are grateful to Benson Farb and Gopal Prasad for helpful conversations. We thank Rachel Skipper for helpful comments on an earlier draft. We also thank Mathoverflow user: 41291 for informing us of [17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Studenmund.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Khalid Bou-Rabee supported in part by National Science Foundation Grant #1405609. Tasho Kaletha supported in part by National Science Foundation Grant #1801687 and a Sloan Fellowship. Daniel Studenmund supported in part by National Science Foundation Grant #1547292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bou-Rabee, K., Kaletha, T. & Studenmund, D. Commensurability growths of algebraic groups. Math. Z. 294, 1749–1757 (2020). https://doi.org/10.1007/s00209-019-02334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02334-5

Keywords

Mathematics Subject Classification

Navigation