Skip to main content
Log in

The largest prime factor of \(n^{2}+1\) and improvements on subexponential \(ABC\)

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We combine transcendental methods and the modular approaches to the \(ABC\) conjecture to show that the largest prime factor of \(n^{2}+1\) is at least of size \((\log _{2} n)^{2}/\log _{3}n\) where \(\log _{k}\) is the \(k\)-th iterate of the logarithm. This gives a substantial improvement on the best available estimates, which are essentially of size \(\log _{2} n\) going back to work of Chowla in 1934. Using the same ideas, we also obtain significant progress on subexpoential bounds for the \(ABC\) conjecture, which in a case gives the first improvement on a result by Stewart and Yu dating back over two decades. Central to our approach is the connection between Shimura curves and the \(ABC\) conjecture developed by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over ℚ: wild 3-adic exercises. J. Am. Math. Soc. 14(4), 843–939 (2001)

    Article  MathSciNet  Google Scholar 

  2. Chowla, S.: The greatest prime factor of \(x^{2}+1\). J. Lond. Math. Soc. 10(2), 117–120 (1935)

    Article  MathSciNet  Google Scholar 

  3. Evertse, J.-H., Györy, K.: Unit Equations in Diophantine Number Theory. Cambridge Studies in Advanced Mathematics, vol. 146. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  4. Murty, M.R.: Bounds for congruence primes. In: Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996). Proc. Sympos. Pure Math., Part 1, vol. 66, pp. 177–192. Am. Math. Soc., Providence (1999)

    Chapter  Google Scholar 

  5. Murty, M.R., Pasten, H.: Modular forms and effective Diophantine approximation. J. Number Theory 133(11), 3739–3754 (2013)

    Article  MathSciNet  Google Scholar 

  6. Pasten, H.: On the arithmetic case of Vojta’s conjecture with truncated counting functions. Preprint (2022). arXiv:2205.07841

  7. Pasten, H.: Shimura curves and the abc conjecture. J. Number Theory 254, 214–335 (2024)

    Article  MathSciNet  Google Scholar 

  8. Ribet, K., Takahashi, S.: Parametrizations of elliptic curves by Shimura curves and by classical modular curves. Proc. Natl. Acad. Sci. USA 94(21), 11110–11114 (1997)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shorey, T., Tijdeman, R.: On the greatest prime factors of polynomials at integer points. Compos. Math. 33(2), 187–195 (1976)

    MathSciNet  Google Scholar 

  10. Stewart, C., Tijdeman, R.: On the Oesterlé-Masser conjecture. Monatshefte Math. 102(3), 251–257 (1986)

    Article  MathSciNet  Google Scholar 

  11. Stewart, C., Yu, K.: On the \(abc\) conjecture. Math. Ann. 291(2), 225–230 (1991)

    Article  MathSciNet  Google Scholar 

  12. Stewart, C., Yu, K.: On the \(abc\) conjecture. II. Duke Math. J. 108(1), 169–181 (2001)

    Article  MathSciNet  Google Scholar 

  13. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)

    Article  MathSciNet  Google Scholar 

  14. van der Poorten, A., Schinzel, A., Shorey, T., Tijdeman, R.: Applications of the Gel’fond-Baker Method to Diophantine Equations. Transcendence Theory: Advances and Applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), pp. 59–77. Academic Press, London (1977)

    Google Scholar 

  15. von Känel, R., Matschke, B.: Solving \(S\)-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via the Shimura-Taniyama conjecture. Mem. Am. Math. Soc. 286, 1419 (2023)

    MathSciNet  Google Scholar 

  16. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Article  MathSciNet  Google Scholar 

  17. Yuan, X., Zhang, S.-W.: On the averaged Colmez conjecture. Ann. Math. (2) 187(2), 533–638 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Kálmán Györy and Cameron L. Stewart for valuable comments on these results. And I am particularly indebted to Samuel Le Fourn and M. Ram Murty for carefully reading an earlier version of this manuscript and suggesting several changes and corrections. The comments and suggestions of the referee are gratefully acknowledged.

Funding

Supported by ANID Fondecyt Regular grant 1230507 from Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Pasten.

Additional information

Dedicado a la memoria de mi padre, quien siempre me apoyó en todo

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasten, H. The largest prime factor of \(n^{2}+1\) and improvements on subexponential \(ABC\). Invent. math. 236, 373–385 (2024). https://doi.org/10.1007/s00222-024-01244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-024-01244-6

Mathematics Subject Classification

Navigation