Skip to main content
Log in

Asymptotics of the solution to the perfect conductivity problem with p-Laplacian

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the perfect conductivity problem with closely spaced perfect conductors embedded in a homogeneous matrix where the current-electric field relation is the power law \(J=\sigma |E|^{p-2}E\). The gradient of solutions may be arbitrarily large as \(\varepsilon \), the distance between inclusions, approaches to 0. To characterize this singular behavior of the gradient in the narrow region between two inclusions, we capture the leading order term of the gradient. This is the first gradient asymptotics result on the nonlinear perfect conductivity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ammari, H., Ciraolo, G., Kang, H., Lee, H., Yun, K.: Spectral analysis of the Neumann–Poincaré operator and characterization of the stress concentration in anti-plane elasticity. Arch. Ration. Mech. Anal. 208(1), 275–304 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ammari, H., Davies, B., Yu, S.: Close-to-touching acoustic subwavelength resonators: eigenfrequency separation and gradient blow-up. Multiscale Model. Simul. 18(3), 1299–1317 (2020)

    Article  MathSciNet  Google Scholar 

  3. Ammari, H., Kang, H., Lee, H., Lee, J., Lim, M.: Optimal estimates for the electric field in two dimensions. J. Math. Pures Appl. (9) 88(4), 307–324 (2007)

    Article  MathSciNet  Google Scholar 

  4. Ammari, H., Kang, H., Lim, M.: Gradient estimates for solutions to the conductivity problem. Math. Ann. 332(2), 277–286 (2005)

    Article  MathSciNet  Google Scholar 

  5. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36 (2006)

    Article  MathSciNet  Google Scholar 

  6. Babuška, I., Andersson, B., Smith, P.J., Levin, K.: Damage analysis of fiber composites. I. Statistical analysis on fiber scale. Comput. Methods Appl. Mech. Eng. 172(1–4), 27–77 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bao, E., Li, H.G., Li, Y.Y., Yin, B.: Derivative estimates of solutions of elliptic systems in narrow regions. Quart. Appl. Math. 72(3), 589–596 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bao, E., Li, Y.Y., Yin, B.: Gradient estimates for the perfect conductivity problem. Arch. Ration. Mech. Anal. 193(1), 195–226 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bao, E., Li, Y.Y., Yin, B.: Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions. Commun. Partial Differ. Equ. 35(11), 1982–2006 (2010)

    Article  MathSciNet  Google Scholar 

  10. Bonnetier, E., Triki, F.: Pointwise bounds on the gradient and the spectrum of the Neumann–Poincaré operator: the case of 2 discs, Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion, pp. 81–91 (2012)

  11. Bonnetier, E., Triki, F.: On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D. Arch. Ration. Mech. Anal. 209(2), 541–567 (2013)

    Article  MathSciNet  Google Scholar 

  12. Brander, T., Ilmavirta, J., Kar, M.: Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Probl. Imaging 12(1), 91–123 (2018)

    Article  MathSciNet  Google Scholar 

  13. Capdeboscq, Y., Yang Ong, S.C.: Quantitative Jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete Contin. Dyn. Syst. Ser. B 25(10), 3857–3887 (2020)

    MathSciNet  Google Scholar 

  14. Ciraolo, G., Sciammetta, A.: Gradient estimates for the perfect conductivity problem in anisotropic media. J. Math. Pures Appl. (9) 127, 268–298 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ciraolo, G., Sciammetta, A.: Stress concentration for closely located inclusions in nonlinear perfect conductivity problems. J. Differ. Equ. 266(9), 6149–6178 (2019)

    Article  MathSciNet  Google Scholar 

  16. DiBenedetto, E., Manfredi, J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115(5), 1107–1134 (1993)

    Article  MathSciNet  Google Scholar 

  17. Dong, H., Li, H.G.: Optimal estimates for the conductivity problem by Green’s function method. Arch. Ration. Mech. Anal. 231(3), 1427–1453 (2019)

    Article  MathSciNet  Google Scholar 

  18. Dong, H., Li, Y.Y., Yang, Z.: Optimal gradient estimates of solutions to the insulated conductivity problem in dimension greater than two. J. Eur. Math. Soc. (to appear). (2021). https://doi.org/10.4171/JEMS/1432

  19. Dong, H., Li, Y.Y., Yang, Z.: Gradient estimates for the insulated conductivity problem: the non-umbilical case (2022). arXiv:2203.10081

  20. Dong, H., Yang, Z., Zhu, H.: The insulated conductivity problem with p-Laplacian. Arch. Ration. Mech. Anal. 247(5), 95 (2023)

    Article  MathSciNet  Google Scholar 

  21. Dong, H., Zhang, H.: On an elliptic equation arising from composite materials. Arch. Ration. Mech. Anal. 222(1), 47–89 (2016)

    Article  MathSciNet  Google Scholar 

  22. Duzaar, F., Mingione, G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259(11), 2961–2998 (2010)

    Article  MathSciNet  Google Scholar 

  23. Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149 (2011)

    Article  MathSciNet  Google Scholar 

  24. Garroni, A., Kohn, R.V.: Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2038), 2613–2625 (2003)

    Article  MathSciNet  Google Scholar 

  25. Gorb, Y.: Singular behavior of electric field of high-contrast concentrated composites. Multiscale Model. Simul. 13(4), 1312–1326 (2015)

    Article  MathSciNet  Google Scholar 

  26. Gorb, Y., Novikov, A.: Blow-up of solutions to a p-Laplace equation. Multiscale Model. Simul. 10(3), 727–743 (2012)

    Article  MathSciNet  Google Scholar 

  27. Idiart, M.I.: The macroscopic behavior of power-law and ideally plastic materials with elliptical distribution of porosity. Mech. Res. Commun. 35(8), 583–588 (2008)

    Article  Google Scholar 

  28. Kang, H., Lim, M., Yun, K.: Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities. J. Math. Pures Appl. (9) 99(2), 234–249 (2013)

    Article  MathSciNet  Google Scholar 

  29. Kang, H., Lim, M., Yun, K.: Characterization of the electric field concentration between two adjacent spherical perfect conductors. SIAM J. Appl. Math. 74(1), 125–146 (2014)

    Article  MathSciNet  Google Scholar 

  30. Kim, J., Lim, M.: Electric field concentration in the presence of an inclusion with eccentric core-shell geometry. Math. Ann. 373(1–2), 517–551 (2019)

    Article  MathSciNet  Google Scholar 

  31. Levy, O., Kohn, R.V.: Duality relations for non-Ohmic composites, with applications to behavior near percolation. J. Statist. Phys. 90(1–2), 159–189 (1998)

    Article  MathSciNet  Google Scholar 

  32. Li, H.G.: Asymptotics for the electric field concentration in the perfect conductivity problem. SIAM J. Math. Anal. 52(4), 3350–3375 (2020)

    Article  MathSciNet  Google Scholar 

  33. Li, H.G., Li, Y.Y., Yang, Z.: Asymptotics of the gradient of solutions to the perfect conductivity problem. Multiscale Model. Simul. 17(3), 899–925 (2019)

    Article  MathSciNet  Google Scholar 

  34. Li, H.G., Wang, F., Xu, L.: Characterization of electric fields between two spherical perfect conductors with general radii in 3D. J. Differ. Equ. 267(11), 6644–6690 (2019)

    Article  MathSciNet  Google Scholar 

  35. Li, Y.Y., Yang, Z.: Gradient estimates of solutions to the conductivity problem with flatter insulators. Anal. Theory Appl. 37(1), 114–128 (2021)

    Article  MathSciNet  Google Scholar 

  36. Li, Y.Y., Yang, Z.: Gradient estimates of solutions to the insulated conductivity problem in dimension greater than two. Math. Ann. 385(3–4), 1775–1796 (2023)

    Article  MathSciNet  Google Scholar 

  37. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MathSciNet  Google Scholar 

  38. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    Article  Google Scholar 

  39. Lim, M., Yun, K.: Blow-up of electric fields between closely spaced spherical perfect conductors. Commun. Partial Differ. Equ. 34(10–12), 1287–1315 (2009)

    Article  MathSciNet  Google Scholar 

  40. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

    Book  Google Scholar 

  41. Suquet, P.-M.: Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41(6), 981–1002 (1993)

    Article  MathSciNet  Google Scholar 

  42. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191–202 (1984)

    Article  MathSciNet  Google Scholar 

  43. Weinkove, B.: The insulated conductivity problem, effective gradient estimates and the maximum principle. Math. Ann. 385(1–2), 1–16 (2023)

    Article  MathSciNet  Google Scholar 

  44. Yun, K.: Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape. SIAM J. Appl. Math. 67(3), 714–730 (2007)

    Article  MathSciNet  Google Scholar 

  45. Yun, K.: Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections. J. Math. Anal. Appl. 350(1), 306–312 (2009)

    Article  MathSciNet  Google Scholar 

  46. Yun, K.: An optimal estimate for electric fields on the shortest line segment between two spherical insulators in three dimensions. J. Differ. Equ. 261(1), 148–188 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuolun Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hongjie Dong was partially supported by the NSF under agreement DMS-2055244. Zhuolun Yang was partially supported by Simons Foundation Institute Grant Award ID 507536 and the AMS-Simons Travel Grant. Hanye Zhu was partially supported by the NSF under agreement DMS-2055244.

Appendix A

Appendix A

In the first part of the appendix, we prove Proposition 4.2. The proof essentially follows those of [26, Proposition 2.1] and [15, Lemma 5.1]. Our estimate is sharper due to a better estimate on \(|Du_0|\) (Proposition 2.2).

Proof of Proposition 4.2

Similar to the proof of Theorem 2.5, for small \(r \in (0,1/2)\), we take a smooth surface \(\eta \) so that \(\mathcal {D}_1^\varepsilon \) is surrounded by \(\Gamma _{-,s}^0 \cup \eta \). See Fig. 1. We denote the surface

$$\begin{aligned} \Sigma _r^\varepsilon := \left\{ x \in \mathbb {R}^n: |x'|=r, -\frac{\varepsilon }{2} + h_2(x')< x_n < h_2(x') \right\} . \end{aligned}$$

Since \(\int _{\partial \mathcal {D}_1^{0}} |D u_{0}|^{p-2} D u_{0} \cdot \nu = \mathcal {F}\) and \(\int _{\partial \mathcal {D}_1^{\varepsilon }} |D u_{\varepsilon }|^{p-2} D u_{\varepsilon } \cdot \nu =0\), by integration by parts, we have

$$\begin{aligned} -\int _{\Gamma _{-,r}^0} |D u_{0}|^{p-2} D u_{0} \cdot \nu + \int _{\eta } |D u_{0}|^{p-2} D u_{0} \cdot \nu = \mathcal {F}, \end{aligned}$$
(A.1)

and

$$\begin{aligned} -\int _{\Gamma _{-,r}^\varepsilon } |D u_{\varepsilon }|^{p-2} D u_{\varepsilon } \cdot \nu + \int _{\Sigma _r^\varepsilon } |D u_{\varepsilon }|^{p-2} D u_{\varepsilon } \cdot \nu + \int _{\eta } |D u_{\varepsilon }|^{p-2} D u_{\varepsilon } \cdot \nu =0.\nonumber \\ \end{aligned}$$
(A.2)

Note that the minus signs appear because \(\nu \) on \(\Gamma _{-,r}^0\) and \(\Gamma _{-,r}^\varepsilon \) are defined to be pointing upwards, while \(\nu \) on \(\eta \) and \(\Sigma _r^\varepsilon \) are pointing away from \(\mathcal {D}_1^\varepsilon \). By (2.5), we have \(|D u_0(x)| \le C_1 e^{-\frac{C_2}{r}}\) in \(\overline{\Omega _{r}^0}\), and hence

$$\begin{aligned} \left| \int _{\Gamma _{-,r}^0} |D u_{0}|^{p-2} D u_{0} \cdot \nu \right| \le C_1 e^{-\frac{C_2}{r}} \end{aligned}$$
(A.3)

for some positive \(\varepsilon \)-independent constants \(C_1\) and \(C_2\). By Theorem 2.5, we have

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0_+} \int _{\eta } |D u_{\varepsilon }|^{p-2} D u_{\varepsilon } \cdot \nu = \int _{\eta } |D u_{0}|^{p-2} D u_{0} \cdot \nu . \end{aligned}$$
(A.4)

By (2.7), we have \(|D u_\varepsilon (x)| \le C (\varepsilon + |x'|^2)^{-1} \) in \({\Omega _{1/2}^0}\). Therefore,

$$\begin{aligned} \left| \int _{\Sigma _r^\varepsilon } |D u_{\varepsilon }|^{p-2} D u_{\varepsilon } \cdot \nu \right|&\le C \int _{|x'|=r}\int _{-\varepsilon /2+h_2(x')}^{h_2(x')} \Big ( \frac{1}{\varepsilon +|x'|^2} \Big )^{p-1} \, dx_n dS \nonumber \\&\le C\frac{\varepsilon r^{n-2}}{(\varepsilon +r^2)^{p-1}}. \end{aligned}$$
(A.5)

Finally, (4.7) follows directly from (A.1)–(A.5). Proposition 4.2 is proved. \(\square \)

In the following, we verify (4.12).

Lemma A.1

(4.12) holds when \(p \ge (n+1)/2\).

Proof

We only give the proof for the case when \(n \ge 3\). The case \(n = 2\) follows similarly and is simpler. After a rotation of coordinates if necessary, we may assume that

$$\begin{aligned} D_{x'}^2 (h_1 - h_2)(0') = \text{ diag }~(\lambda _1, \ldots , \lambda _{n-1}). \end{aligned}$$

First, we replace \(\delta (y)\) in the denominator with the quadratic polynomial \(\varepsilon + \sum _{i=1}^{n-1} \lambda _i y_i^2/2\). By (1.8), (1.9), and the fact that \(h_1,h_2\) are \(C^2\), we estimate

$$\begin{aligned}&\left| \int _{|y'|< r} \Big ( \frac{\Theta (\varepsilon )}{\delta (y)}\Big )^{p-1} - \Big ( \frac{\Theta (\varepsilon )}{\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2}\Big )^{p-1} \, dy' \right| \\&\quad = \Theta (\varepsilon )^{p-1 } \left| \int _{|y'|< r} \frac{\Big (\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2\Big )^{p-1} - \delta (y)^{p-1} }{\Big [ \delta (y) \Big (\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2\Big ) \Big ]^{p-1}} \, dy' \right| \\&\quad \le C \Theta (\varepsilon )^{p-1} \int _{|y'|< r} \frac{h(r)|y'|^2(\varepsilon + |y'|^2)^{p-2}}{(\varepsilon + |y'|)^{2p-2}} \, dy'\\&\quad \le C h(r) \int _{|y'| < r} \Big ( \frac{\Theta (\varepsilon )}{\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2}\Big )^{p-1} \, dy', \end{aligned}$$

where h(r) is the modulus of continuity of \(D_{x'}^2 (h_1 - h_2)\), and hence \(h(r) \rightarrow 0\) as \(r \rightarrow 0\), and C is some positive constant independent of \(\varepsilon \) and r. Therefore, it suffices to show that for any \(r > 0\),

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0_+} \int _{|y'| < r} \Big ( \frac{\Theta (\varepsilon )}{\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2}\Big )^{p-1} \, dy' = \frac{1}{K}. \end{aligned}$$
(A.6)

In the spherical coordinates, for \(y' \in \mathbb {R}^{n-1}\), we write

$$\begin{aligned} y_1= & {} \sqrt{\frac{2}{\lambda _1}}s \cos \theta _1,\quad y_2= \sqrt{\frac{2}{\lambda _2}}s\sin \theta _1\cos \theta _2,\quad y_3=\sqrt{\frac{2}{\lambda _3}}s\sin \theta _1\sin \theta _2\cos \theta _3,\ldots , \\ y_{n-2}= & {} \sqrt{\frac{2}{\lambda _{n-2}}}s \sin \theta _1\sin \theta _2\cdots \sin \theta _{n-3}\cos \theta _{n-2}, \\ y_{n-1}= & {} \sqrt{\frac{2}{\lambda _{n-1}}}s\sin \theta _1\sin \theta _2\cdots \sin \theta _{n-3}\sin \theta _{n-2}, \end{aligned}$$

where \(s \in [0, \infty )\), \(\theta _1,\theta _2,\ldots ,\theta _{n-3}\in [0,\pi ]\) and \(\theta _{n-2}\in [0,2\pi )\). For convenience of notation, we denote \(\Sigma :=[0,\pi ]^{n-3}\times [0,2\pi )\). By this change of variables,

$$\begin{aligned}&\int _{|y'| < r} \Big ( \frac{\Theta (\varepsilon )}{\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2}\Big )^{p-1} \, dy' \nonumber \\&\quad = \frac{2^{\frac{n-1}{2}}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\frac{r}{\varphi (\theta )}}\Big ( \frac{\Theta (\varepsilon )}{\varepsilon + s^2}\Big )^{p-1} s^{n-2} J(\theta )\,dsd\theta , \end{aligned}$$
(A.7)

where

$$\begin{aligned} \varphi (\theta ) = \Big ( \frac{2}{\lambda _1}\cos ^2\theta _1 + \frac{2}{\lambda _2} \sin ^2\theta _1\cos ^2\theta _2 + \cdots + \frac{2}{\lambda _{n-1}}\sin ^2\theta _1\cdots \sin ^2\theta _{n-2} \Big )^{\frac{1}{2}}, \end{aligned}$$

and

$$\begin{aligned} J(\theta )=\sin ^{n-3}\theta _1 \sin ^{n-4}\theta _2\cdots \sin \theta _{n-3}. \end{aligned}$$

Note that

$$\begin{aligned} \sqrt{\frac{2}{\max \lambda _i}} \le \varphi (\theta ) \le \sqrt{\frac{2}{\min \lambda _i}}. \end{aligned}$$

When \(p > (n+1)/2\), \(\Theta (\varepsilon ) = \varepsilon ^{\frac{2p-n-1}{2(p-1)}}\). By the change of variables \(t = \varepsilon ^{-1}s^2\), the right-hand side of (A.7) becomes

$$\begin{aligned} \frac{2^{\frac{n-3}{2}}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\frac{r^2}{\varphi ^2(\theta )\varepsilon }} \frac{t^{\frac{n-3}{2}}}{(1+t)^{p-1}} \, dt J(\theta ) d\theta . \end{aligned}$$

Since \((n-3)/2 - (p-1) = (n-2p-1)/2 < -1\), the integral converges as \(\varepsilon \rightarrow 0\). Therefore,

$$\begin{aligned}&\lim _{\varepsilon \rightarrow 0_+} \int _{|y'| < r} \Big ( \frac{\Theta (\varepsilon )}{\varepsilon + \sum _{i=1}^{n-1} \frac{\lambda _i}{2} y_i^2}\Big )^{p-1} \, dy'\nonumber \\&\quad = \frac{2^{\frac{n-3}{2}}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\infty } \frac{t^{\frac{n-3}{2}}}{(1+t)^{p-1}} \, dt J(\theta ) d\theta \nonumber \\&\quad = \frac{2^{\frac{n-3}{2}}|\mathbb {S}^{n-2}|}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} B\Big (\frac{n-1}{2}, \frac{2p-n-1}{2} \Big ), \end{aligned}$$
(A.8)

where B is the beta function. Recalling the identities

$$\begin{aligned} |\mathbb {S}^{n-2}| = \frac{2\pi ^{\frac{n-1}{2}}}{\Gamma \big (\frac{n-1}{2} \big )}, \quad B\Big (\frac{n-1}{2}, \frac{2p-n-1}{2} \Big ) = \frac{\Gamma \big (\frac{n-1}{2} \big )\Gamma \big (p -\frac{n-1}{2} \big )}{\Gamma (p-1)}, \end{aligned}$$
(A.9)

and plugging them into (A.8), we have proved (A.6) for the case when \(p > (n+1)/2\).

When \(p = (n+1)/2\), \(\Theta (\varepsilon ) = |\ln \varepsilon |^{-\frac{1}{p-1}}\). By the change of variables \(w = \varepsilon ^{-1/2}s\), the right-hand side of (A.7) becomes

$$\begin{aligned}&\frac{2^{\frac{n-1}{2}}|\ln \varepsilon |^{-1}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\frac{r}{\varphi (\theta )\sqrt{\varepsilon }}}\frac{w^{n-2}}{(1+w^2)^{\frac{n-1}{2}}} \, dw J(\theta )\, d\theta \\&\quad = \frac{2^{\frac{n-1}{2}}|\ln \varepsilon |^{-1}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\frac{r}{\varphi (\theta )\sqrt{\varepsilon }}}\frac{w}{1+w^2} \, dw J(\theta )\, d\theta \\&\qquad + \frac{2^{\frac{n-1}{2}}|\ln \varepsilon |^{-1}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\frac{r}{\varphi (\theta )\sqrt{\varepsilon }}} \left( \frac{w^{n-2}}{(1+w^2)^{\frac{n-1}{2}}} - \frac{w}{1+w^2} \right) \, dw J(\theta )\, d\theta \\&\quad =: \textrm{I} + \textrm{II}. \end{aligned}$$

By direct computations,

$$\begin{aligned} \textrm{I}&= \frac{2^{\frac{n-3}{2}}|\ln \varepsilon |^{-1}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \int _0^{\frac{r}{\varphi (\theta )\sqrt{\varepsilon }}} \, d \ln (1 + w^2) J(\theta )\, d\theta \\&= \frac{2^{\frac{n-3}{2}}|\ln \varepsilon |^{-1}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} \int _\Sigma \Big [\ln \big ( \varepsilon + \frac{r^2}{\varphi ^2(\theta )} \big ) - \ln \varepsilon \Big ] J(\theta )\, d\theta . \end{aligned}$$

Therefore, by (A.9),

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0_+} \textrm{I} = \frac{2^{\frac{n-3}{2}}|\mathbb {S}^{n-2}|}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}} = \frac{(2\pi )^{\frac{n-1}{2}}}{(\lambda _1 \cdots \lambda _{n-1})^{\frac{1}{2}}\Gamma \big (\frac{n-1}{2} \big )}. \end{aligned}$$
(A.10)

To estimate \(\textrm{II}\), we split the integral over \((0, \frac{r}{\varphi (\theta )\sqrt{\varepsilon }})\) into (0, 1) and \((1, \frac{r}{\varphi (\theta )\sqrt{\varepsilon }})\), and denote them by \(\textrm{II}_1\) and \(\textrm{II}_2\), respectively. It is easily seen that \(|\textrm{II}_1| \le C|\ln \varepsilon |^{-1}\). To estimate \(\textrm{II}_2\), we have

$$\begin{aligned} |\textrm{II}_2| \le C|\ln \varepsilon |^{-1} \int _\Sigma \int _1^{\frac{r}{\varphi (\theta )\sqrt{\varepsilon }}} \frac{w \Big [ w^{n-3} - (1+w^2)^{\frac{n-3}{2}} \Big ]}{(1 + w^2)^{\frac{n-1}{2}}}\, dw J(\theta )\, d\theta . \end{aligned}$$

By the mean value theorem, there exists a \(\xi \in (w^2, 1+w^2)\), such that

$$\begin{aligned} w^{n-3} - (1+w^2)^{\frac{n-3}{2}} = - \frac{n-3}{2} \xi ^{\frac{n-5}{2}}. \end{aligned}$$

Note that \((w^2, 1 + w^2) \subset (w^2, 2w^2)\) when \(w \ge 1\). Therefore,

$$\begin{aligned} \left| \int _1^{\frac{r}{\varphi (\theta )\sqrt{\varepsilon }}} \frac{w \Big [ w^{n-3} - (1+w^2)^{\frac{n-3}{2}} \Big ]}{(1 + w^2)^{\frac{n-1}{2}}}\, dw \right| \le C\int _1^\infty \frac{w^{n-4}}{(1 + w^2)^{\frac{n-1}{2}}} \le C, \end{aligned}$$

which implies \(|\textrm{II}_2| \le C|\ln \varepsilon |^{-1}\). Hence, by (A.10) and the estimate \(|\textrm{II}_1| + |\textrm{II}_2| \le C|\ln \varepsilon |^{-1}\), we have proved (A.6) for the case when \(p = (n+1)/2\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Yang, Z. & Zhu, H. Asymptotics of the solution to the perfect conductivity problem with p-Laplacian. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02876-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02876-y

Mathematics Subject Classification

Navigation