Skip to main content

Advertisement

Log in

The Insulated Conductivity Problem with p-Laplacian

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the insulated conductivity problem with closely spaced insulators embedded in a homogeneous matrix where the current-electric field relation is the power law \(J = |E|^{p-2}E\). The gradient of solutions may blow up as \(\varepsilon \), the distance between insulators, approaches to 0. We prove an upper bound of the gradient to be of order \(\varepsilon ^{-\alpha }\), where \(\alpha = 1/2\) when \(p \in (1,n+1]\) and any \(\alpha > n/(2(p-1))\) when \(p > n + 1\). We provide examples to show that this exponent is almost optimal in 2D. Additionally, in dimensions \(n \geqq 3\), for any \(p > 1\), we prove another upper bound of order \(\varepsilon ^{-1/2 + \beta }\) for some \(\beta > 0\), and show that \(\beta \nearrow 1/2\) as \(n \rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Kang, H., Lee, H., Lee, J., Lim, M.: Optimal estimates for the electric field in two dimensions. J. Math. Pures Appl. (9) 88(4), 307–324, 2007

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari, H., Kang, H., Lim, M.: Gradient estimates for solutions to the conductivity problem. Math. Ann. 332(2), 277–286, 2005

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36, 2006

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Andersson, B., Smith, P.J., Levin, K.: Damage analysis of fiber composites. I. Statistical analysis on fiber scale. Comput. Methods Appl. Mech. Eng. 172(1–4), 27–77, 1999

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bao, E., Li, Y.Y., Yin, B.: Gradient estimates for the perfect conductivity problem. Arch. Ration. Mech. Anal. 193(1), 195–226, 2009

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, E., Li, Y.Y., Yin, B.: Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions. Comm. Part. Differ. Equ. 35(11), 1982–2006, 2010

    Article  MathSciNet  MATH  Google Scholar 

  7. Brander, T., Ilmavirta, J., Kar, M.: Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Probl. Imaging 12(1), 91–123, 2018

    Article  MathSciNet  MATH  Google Scholar 

  8. Budiansky, B., Carrier, G.F.: High shear stresses in stiff–fiber composites. J. Appl. Mech. 51(4), 733–735, 1984

    Article  ADS  MATH  Google Scholar 

  9. Ciraolo, G., Sciammetta, A.: Gradient estimates for the perfect conductivity problem in anisotropic media. J. Math. Pures Appl. (9) 127, 268–298, 2019

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciraolo, G., Sciammetta, A.: Stress concentration for closely located inclusions in nonlinear perfect conductivity problems. J. Differ. Equ. 266(9), 6149–6178, 2019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. DiBenedetto, E., Manfredi, J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115(5), 1107–1134, 1993

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, H., Li, Y.Y., Yang, Z.: Optimal gradient estimates of solutions to the insulated conductivity problem in dimension greater than two. J. Eur. Math. Soc. (to appear) (2021). arXiv:2110.11313

  13. Dong, H., Li, Y.Y., Yang, Z.: Gradient estimates for the insulated conductivity problem: The non-umbilical case (2022). arXiv:2203.10081.

  14. Dong, H., Li, Z.: Classical solutions of oblique derivative problem in nonsmooth domains with mean Dini coefficients. Trans. Am. Math. Soc. 373(7), 4975–4997, 2020

    Article  MathSciNet  MATH  Google Scholar 

  15. Duzaar, F., Mingione, G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259(11), 2961–2998, 2010

    Article  MathSciNet  MATH  Google Scholar 

  16. Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149, 2011

    Article  MathSciNet  MATH  Google Scholar 

  17. Garroni, A., Kohn, R.V.: Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2038), 2613–2625, 2003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gorb, Y., Novikov, A.: Blow-up of solutions to a p-Laplace equation. Multiscale Model. Simul. 10(3), 727–743, 2012

    Article  MathSciNet  MATH  Google Scholar 

  19. Hamburger, C.: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431, 7–64, 1992

    MathSciNet  MATH  Google Scholar 

  20. Idiart, M.I.: The macroscopic behavior of power-law and ideally plastic materials with elliptical distribution of porosity. Mech. Res. Commun. 35(8), 583–588, 2008

    Article  MathSciNet  MATH  Google Scholar 

  21. Keller, J.B.: Stresses in narrow regions. J. Appl. Mech. 60(4), 1054–1056, 1993

    Article  ADS  MATH  Google Scholar 

  22. Krylov, N.V.: Nonlinear elliptic and parabolic equations of the second order. Mathematics and Its Applications (Soviet Series), vol. 7. D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ].

  23. Levy, O., Kohn, R.V.: Duality relations for non-Ohmic composites, with applications to behavior near percolation. J. Stat. Phys. 90(1–2), 159–189, 1998

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, Y.Y., Yang, Z.: Gradient estimates of solutions to the conductivity problem with flatter insulators. Anal. Theory Appl. 37(1), 114–128, 2021

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y.Y., Yang, Z.: Gradient estimates of solutions to the insulated conductivity problem in dimension greater than two. Math. Ann. 385(3–4), 1775–1796, 2023

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219, 1988

    Article  MathSciNet  MATH  Google Scholar 

  27. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’seva for elliptic equations. Comm. Part. Differ. Equ. 16(2–3), 311–361, 1991

    Article  MATH  Google Scholar 

  28. Markenscoff, X.: Stress amplification in vanishingly small geometries. Comput. Mech. 19(1), 77–83, 1996

    Article  MathSciNet  MATH  Google Scholar 

  29. R\(\mathring{{\rm u}}\)žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000

  30. Suquet, P.-M.: Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41(6), 981–1002, 1993

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747, 1967

    Article  MathSciNet  MATH  Google Scholar 

  32. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138(3–4), 219–240, 1977

    Article  MathSciNet  MATH  Google Scholar 

  33. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191–202, 1984

    Article  MathSciNet  MATH  Google Scholar 

  34. Weinkove, B.: The insulated conductivity problem, effective gradient estimates and the maximum principle. Math. Ann. 385(1–2), 1–16, 2023

    Article  MathSciNet  MATH  Google Scholar 

  35. Yun, K.: An optimal estimate for electric fields on the shortest line segment between two spherical insulators in three dimensions. J. Differ. Equ. 261(1), 148–188, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dong.

Additional information

Communicated by D. Kinderlehrer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Dong is partially supported by Simons Fellows Award 007638 and the NSF under Agreement DMS-2055244. Z. Yang is partially supported by Simons Foundation Institute Grant Award ID 507536. H. Zhu is partially supported by the NSF under Agreement DMS-2055244.

Appendix A.

Appendix A.

In the appendix, we provide an alternative proof of the gradient estimates of order \(\varepsilon ^{-1/2}\) using a Bernstein type argument. This proof also requires the assumptions that \(h_1\) and \(h_2\) are \(C^{2,\text {Dini}}\) functions and satisfy (1.10) for some \(\kappa _1,\kappa _2 > 0\), in addition to (1.3) imposed in Theorem 1.1.

Theorem A.1

Let \(h_1\), \(h_2\) be \(C^{2,\text {Dini}}\) functions satisfying (1.10), \(p > 1\), \(n \geqq 2\), \(\varepsilon \in (0,1)\), and \(u \in W^{1,p}(\Omega _{1})\) be a solution of (1.7). Then there exists a positive constant C depending only on n, p, \(\kappa _1\), and \(\kappa _2\), such that

$$\begin{aligned} |D u(x)| \leqq C \Vert u\Vert _{L^\infty (\Omega _{1})} (\varepsilon + |x'|^2)^{-1/2} \quad \text{ for }~~x \in \Omega _{1/2}. \end{aligned}$$
(A.1)

Proof

Without loss of generality, we may assume \(\kappa _1\in (0,1]\) and \(\kappa _2>1\). The case \(p=2\) has been shown in [6, 34]. It remains to show the cases when \(p > 2\) and \( p \in (1, 2)\).

Case 1: For \(p > 2\), we consider the quantity \(F^{q/2}\), where

$$\begin{aligned} F = Q|D u|^2 + A u^2, \quad Q = \varepsilon + |x'|^2 - 4\kappa _1^{-1} \kappa _2^2 x_n^2, \end{aligned}$$
(A.2)

\(q \geqq 2\) and A are some positive \(\varepsilon \)-independent constants to be determined later. Let

$$\begin{aligned} S_A: = \{ Q|D u|^2 > 100 Au^2 \}. \end{aligned}$$

We will show that \(F^{q/2}\) does not achieve its maximum on \((\Gamma _+ \cup \Gamma _-) \cap {\overline{\Omega }}_{r_0}\cap S_A\) or in \(\Omega _{r_0} \cap S_A\) for some suitable q, A, and \(r_0\). Therefore, \(F^{q/2}\) can only achieve its maximum in

$$\begin{aligned} \Omega _{r_0} \cap \{ Q|D u|^2 \leqq 100 Au^2 \}, \end{aligned}$$

or on

$$\begin{aligned} \{|x'| = r_0\} \cap \Omega _{1}, \end{aligned}$$

so (A.1) follows from either case.

First we show that \(F^{q/2}\) does not achieve its maximum on \(\Gamma _+ \cap {\overline{\Omega }}_{r_0}\cap S_A\). A similar argument applies to \(\Gamma _- \cap {\overline{\Omega }}_{r_0}\cap S_A\). On \(\Gamma _+\), the normal vector \(\nu \) is given by (6.2). Then

$$\begin{aligned}&D_\nu F^{q/2} = \frac{q}{2} F^{q/2-1} (D_\nu Q |D u|^2 + Q D_\nu |D u|^2)\\&\quad = \frac{q}{2} F^{q/2-1} \Bigg ( \frac{-2}{\sqrt{1 + |D_{x'} h_1|^2}} \Big [ \sum _{j = 1}^{n-1} D_j h_1 x_j + 4\frac{\kappa _2^2}{\kappa _1} (\varepsilon /2 + h_1) \Big ]|D u|^2 + Q D_\nu |D u|^2) \Bigg ). \end{aligned}$$

We choose \(r_0\) small enough such that

$$\begin{aligned} \frac{-2}{\sqrt{1 + |D_{x'} h_1|^2}} \leqq \frac{-2}{\sqrt{1 + |\kappa _2 x'|^2}} \leqq -1 \quad \text{ for }~~|x'|< r_0. \end{aligned}$$

By (1.3) and (1.10), we have

$$\begin{aligned} \sum _{j = 1}^{n-1} D_j h_1 x_j \geqq \kappa _1 |x'|^2 \quad \text{ and } \quad h_1 \geqq \frac{1}{2}\kappa _1|x'|^2. \end{aligned}$$

Therefore, by (6.1) with \(s=2\), we have

$$\begin{aligned}&D_\nu F^{q/2} \\&\quad \leqq \frac{q}{2} F^{q/2-1} |D u|^2 \Bigg [ -\Bigg (\kappa _1|x'|^2 + 2 \frac{\kappa _2^2}{\kappa _1}\varepsilon + 2\kappa _2^2|x'|^2\Bigg ) + 2\kappa _2\Bigg (\varepsilon + |x'|^2 - 4 \frac{\kappa _2^2}{\kappa _1} x_n^2\Bigg )\Bigg ]\\&\quad = - \frac{q}{2} F^{q/2-1} |D u|^2 \Bigg [ 2\kappa _2 \Bigg (\frac{\kappa _2}{\kappa _1}-1\Bigg ) \varepsilon + 2\kappa _2(\kappa _2-1)|x'|^2 + \kappa _1|x'|^2 + 8 \frac{\kappa _2^2}{\kappa _1} x_n^2 \Bigg ]\\&\quad < 0. \end{aligned}$$

Hence \(F^{q/2}\) does not achieve its maximum on \(\Gamma _+ \cap {\overline{\Omega }}_{r_0}\cap S_A\). Next, we will show \(F^{q/2}\) does not achieve its maximum in \(\Omega _{r_0} \cap S_A\) by proving that \(a^{ij} D_{ij} F^{q/2} > 0\), where \(a^{ij}\) is given in (6.5). By direct computations, we have

$$\begin{aligned} a^{ij} D_{ij} F^{q/2}&= \frac{q}{2} F^{q/2 - 1} a^{ij} D_{ij} F + \frac{q}{2}\Big ( \frac{q}{2}-1 \Big ) F^{q/2-2} a^{ij} D_i F D_j F,\\ D_i F&= D_i Q |D u|^2 + 2Q D_{ik}u D_k u + 2Au D_i u, \end{aligned}$$

and

$$\begin{aligned} D_{ij} F =&D_{ij}Q |D u|^2 + 2 D_i Q D_k u D_{jk} u +2 D_j Q D_k u D_{ik} u \\&+ 2Q(D_{ik}u D_{jk} u + D_k u D_{ijk} u) + 2A(u D_{ij}u + D_i u D_j u). \end{aligned}$$

Then by (6.5) and because \(a^{ij}D_{ij} u = 0\),

$$\begin{aligned}&a^{ij} D_{ij} F \\&\quad = a^{ij} D_{ij} Q |D u|^2 + 4(p-2)|D u|^{-2} D_i u D_i Q \Delta _\infty u + 4 D_i Q D_k u D_{ik} u + 2Q |D^2 u|^2\\&\qquad + 2(p-2)Q |D |D u||^2 + 2Q a^{ij} D_{ijk} u D_k u + 2A a^{ij} D_i u D_j u, \end{aligned}$$

where \(\Delta _\infty u:= D_i u D_j u D_{ij} u\). By (6.9),

$$\begin{aligned}&a^{ij} D_{ij} F \\&\quad = a^{ij} D_{ij} Q |D u|^2 + 4(p-2)|D u|^{-2} D_i u D_i Q \Delta _\infty u + 4 D_i Q D_k u D_{ik} u + 2Q |D^2 u|^2\\&\qquad - 2(p-2)Q |D |D u||^2 + 4 (p-2) Q|D u|^{-4} |\Delta _\infty u|^2 + 2A a^{ij} D_i u D_j u. \end{aligned}$$

By another direction computation, we have

$$\begin{aligned}&a^{ij} D_i F D_j F \\&\quad = a^{ij} D_i Q D_j Q |D u|^4 + 4Q^2 a^{ij} D_{ik}u D_ku D_{jl}u D_l u + 4A^2 u^2 a^{ij} D_iu D_ju\\&\qquad + 4Q|D u|^2 a^{ij} D_i Q D_{jl} u D_lu + 4Au |D u|^2a^{ij} D_i Q D_j u + 8AQ u a^{ij} D_{ik} u D_k u D_ju\\&\quad = a^{ij} D_i Q D_j Q |D u|^4 + 4(p-2)Q^2 |D u|^{-2} |\Delta _\infty u|^2 + 4Q^2 |D u|^2 |D |D u||^2\\&\qquad + 4(p-1)A^2 u^2|D u|^2 + 4(p-2) Q D_i u D_i Q \Delta _\infty u +4Q D_i Q D_{ik}u D_k u |D u|^2\\&\qquad + 4 A(p-1) |D u|^2 u D_i u D_i Q + 8(p-1)AQu \Delta _\infty u. \end{aligned}$$

Therefore,

$$\begin{aligned}&a^{ij} D_{ij} F^{q/2}\nonumber \\&\quad = \frac{q}{2} F^{q/2 -2} \big [ a^{ij} D_{ij} Q |D u|^2 F +2Q|D |D u||^2 \big ( (q-2)Q|D u|^2 - (p-2)F \big ) \nonumber \\&\qquad + 4(p-2) D_i u D_i Q \Delta _\infty u |D u|^{-2} (F + (q-2)Q|D u|^2/2) + 2QF|D^2 u|^2\nonumber \\&\qquad + 4 D_i Q D_k u D_{ik}u (F + (q-2)Q|D u|^2/2)\nonumber \\&\qquad + 4(p-2)Q|D u|^{-4} (F + (q-2)Q|D u|^2/2) |\Delta _\infty u|^2 \nonumber \\&\qquad + 2AFa^{ij} D_i u D_j u + (q-2)a^{ij}|Du|^4 D_i Q D_j Q/2 + 2(p-1)(q-2) A^2 u^2 |D u|^2 \nonumber \\&\qquad + 2A(p-1)(q-2)|D u|^2 u D_i u D_i Q + 4(p-1)(q-2)AQu \Delta _\infty u \big ]. \end{aligned}$$
(A.3)

Note that in \(S_A\),

$$\begin{aligned} Q|D u|^2 \leqq F \leqq \frac{101}{100} Q |D u|^2. \end{aligned}$$
(A.4)

By (6.6),

$$\begin{aligned} (q-2)a^{ij}D_i Q D_j Q/2 \geqq (q-2)|D Q|^2 /2 \geqq 0 \quad \text{ for }~~q \geqq 2, \end{aligned}$$

and

$$\begin{aligned}&a^{ij} D_{ij} Q |D u|^2 F + 2AFa^{ij} D_i u D_j u\nonumber \\&\quad = [2(n-1) - 8\kappa _1^{-1}\kappa _2^2 + (p-2)|D u|^{-2} (2|D_{x'} u|^2 - 8\kappa _1^{-1}\kappa _2^2 |D_n u|^2)] |D u|^2 F\nonumber \\&\qquad + 2AFa^{ij} D_i u D_j u\nonumber \\&\quad \geqq \Big ( 2(n-1) - 8\kappa _1^{-1}\kappa _2^2(p-1) + 2A \Big ) |D u|^2 F\nonumber \\&\quad \geqq \Big ( 2(n-1) - 8\kappa _1^{-1}\kappa _2^2(p-1) + 2A \Big ) |D u|^4 Q. \end{aligned}$$
(A.5)

We choose \(q = \frac{101}{100}(p-2) + 2 > p\), so that

$$\begin{aligned}&2Q|D |D u||^2 \big ( (q-2)Q|D u|^2 - (p-2)F \big )\\&\quad \geqq 2Q|D |D u||^2 \bigg ( (q-2) - \frac{101}{100}(p-2) \bigg )Q|D u|^2 = 0. \end{aligned}$$

It remains to control

$$\begin{aligned}&4(p-2) D_i u D_i Q \Delta _\infty u |D u|^{-2} (F + (q-2)Q|D u|^2/2)\\&\qquad +4 D_i Q D_k u D_{ik}u (F + (q-2)Q|D u|^2/2)\\&\qquad + 2A(p-1)(q-2)|D u|^2 u D_i u D_i Q + 4(p-1)(q-2)AQu \Delta _\infty u\\&\quad =: I + II + III + IV. \end{aligned}$$

Since \(p > 2\), we have

$$\begin{aligned} \frac{2(p-2)q}{(p-1)(q-2)} = \frac{2 \Big [ \frac{101}{100}(p-2) + 2\Big ]}{\frac{101}{100}(p-1)} > 2. \end{aligned}$$

Fix a constant \(B \in (2, \frac{2(p-2)q}{(p-1)(q-2)})\). We shrink \(r_0\) if necessary so that \(|D Q|^2 \leqq 8 Q\). By Young’s inequality and (A.4),

$$\begin{aligned} |I| \leqq&\left( \frac{p-2}{2} - \frac{B(p-1)(q-2)}{4q} \right) |D u|^{-4} |D Q|^2 |\Delta _\infty u|^2 (F + (q-2)Q|D u|^2/2)\nonumber \\&+ C(p) |D u|^2 (F + (q-2)Q|D u|^2/2) \nonumber \\ \leqq&\left( 4(p-2) - \frac{2B(p-1)(q-2)}{q} \right) Q |D u|^{-4} |\Delta _\infty u|^2 (F + (q-2)Q|D u|^2/2)\nonumber \\&+ C(p) |D u|^4Q, \end{aligned}$$
(A.6)

where C(p) is some positive constant depending on p. By Young’s inequality and (A.4),

$$\begin{aligned} |II|&\leqq 4 \Big (\frac{101}{100} + \frac{q-2}{2}\Big ) |D Q| |D^2 u| |D u|^3 Q\nonumber \\&\leqq 4 \Big (\frac{101}{100} + \frac{q-2}{2}\Big )^2 |D Q|^2 |D u|^4 + Q^2 |D^2 u|^2 |D u|^2 \nonumber \\&\leqq 32 \Big (\frac{101}{100} + \frac{q-2}{2}\Big )^2 |D u|^4 Q+ QF |D^2 u|^2, \end{aligned}$$
(A.7)
$$\begin{aligned} |III|&\leqq 2(p-1)(q-2) A |D u|^3|u| |D Q|\nonumber \\&\leqq \left( 2 - \frac{4}{B} \right) (p-1)(q-2) A^2 u^2 |D u|^2 + \frac{4B}{B-2}(p-1)(q-2) |D u|^4 Q, \end{aligned}$$
(A.8)

and

$$\begin{aligned} |IV| \leqq&\frac{4}{B}(p-1)(q-2) A^2 u^2 |D u|^2 + B(p-1)(q-2)Q^2 |D u|^{-2} |\Delta _\infty u|^2 \nonumber \\ \leqq&\frac{4}{B}(p-1)(q-2) A^2 u^2 |D u|^2 \nonumber \\&+ \frac{2B(p-1)(q-2)}{q} Q |D u|^{-4} |\Delta _\infty u|^2 (F + (q-2)Q|D u|^2/2). \end{aligned}$$
(A.9)

Now we choose A large such that

$$\begin{aligned}{} & {} 2(n-1) - 8\kappa _1^{-1}\kappa _2^2(p-1) + 2A - C(p)- 32 \Big (\frac{101}{100} + \frac{q-2}{2}\Big )^2\\{} & {} \quad - \frac{4B}{B-2}(p-1)(q-2) > 0. \end{aligned}$$

Then by (A.3), (A.5), (A.6), (A.7), (A.8), and (A.9), \(a^{ij} D_{ij} F^{q/2} > 0\) in \(\Omega _{r_0} \cap S_A\), and hence \(F^{q/2}\) does not achieve its maximum in \(\Omega _{r_0} \cap S_A\). This concludes the proof for the case when \(p > 2\).

Case 2: For \(p \in (1,2)\), we consider the quantify F given in (A.2). A similar argument as above shows that F does not achieve maximum on \((\Gamma _+ \cup \Gamma _-) \cap {\overline{\Omega }}_{r_0}\cap S_A\). In \(\Omega _{r_0} \cap S_A\), we compute

$$\begin{aligned}&a^{ij} D_{ij} F\nonumber \\&\quad = a^{ij} D_{ij} Q |D u|^2 - 4(2-p)|D u|^{-2} D_i u D_i Q \Delta _\infty u + 4 D_i Q D_k u D_{ik} u + 2Q |D^2 u|^2\nonumber \\&\qquad + 2(2-p)Q |D |D u||^2 - 4 (2-p) Q|D u|^{-4} |\Delta _\infty u|^2 + 2A a^{ij} D_i u D_j u, \end{aligned}$$
(A.10)

where \(a^{ij}\) is given in (6.5) satisfying (6.16). By a direct computation and (6.16), we have

$$\begin{aligned}&a^{ij} D_{ij} Q |D u|^2 + 2Aa^{ij} D_i u D_j u\nonumber \\&\quad = [2(n-1) - 8\kappa _1^{-1}\kappa _2^2 + (p-2)|D u|^{-2} (2|D_{x'} u|^2 - 8\kappa _1^{-1}\kappa _2^2 |D_n u|^2)] |D u|^2 \nonumber \\&\qquad + 2Aa^{ij} D_i u D_j u\nonumber \\&\quad \geqq \Big ( 2(n-1) - 8\kappa _1^{-1}\kappa _2^2 -2(2-p) + 2A(p-1) \Big ) |D u|^2. \end{aligned}$$
(A.11)

Note that

$$\begin{aligned} |D u|^{-4} |\Delta _\infty u|^2 \leqq |D |D u||^2 \leqq |D^2 u|^2. \end{aligned}$$

Therefore,

$$\begin{aligned}&2Q |D^2 u|^2 + 2(2-p)Q |D |D u||^2 - 4 (2-p) Q|D u|^{-4} |\Delta _\infty u|^2\nonumber \\&\quad \geqq 2(p-1)Q |D^2 u|^2. \end{aligned}$$
(A.12)

It remains to control

$$\begin{aligned} - 4(2-p)|D u|^{-2} D_i u D_i Q \Delta _\infty u + 4 D_i Q D_k u D_{ik} u =: I + II. \end{aligned}$$

By Young’s inequality and \(|D Q|^2 \leqq 8Q\) for small \(r_0\), we have

$$\begin{aligned} |I| \leqq&4(2-p) |D u|^{-1} |D Q| |\Delta _\infty u|\nonumber \\ \leqq&\frac{p-1}{16} |D Q|^2 |D u|^{-4} |\Delta _\infty u|^2 + \frac{64(2-p)^2}{p-1} |D u|^2\nonumber \\ \leqq&\frac{p-1}{2} Q|D u|^{-4} |\Delta _\infty u|^2 + \frac{64(2-p)^2}{p-1} |D u|^2, \end{aligned}$$
(A.13)

and

$$\begin{aligned} |II| \leqq&4|D Q| |D u| |D^2 u|\nonumber \\ \leqq&\frac{p-1}{16} |D Q|^2|D^2 u|^2 + \frac{64}{p-1}|D u|^2\nonumber \\ \leqq&\frac{p-1}{2} Q|D^2 u|^2 + \frac{64}{p-1}|D u|^2. \end{aligned}$$
(A.14)

Now we choose A large such that

$$\begin{aligned} 2(n-1) - 8\kappa _1^{-1}\kappa _2^2 -2(2-p) + 2A(p-1) - \frac{64(2-p)^2}{p-1} - \frac{64}{p-1} > 0. \end{aligned}$$

Then by (A.10), (A.11), (A.12), (A.13), and (A.14), \(a^{ij} D_{ij} F > 0\) in \(\Omega _{r_0} \cap S_A\), and hence F does not achieve its maximum in \(\Omega _{r_0} \cap S_A\). This concludes the proof for the case when \(p \in (1, 2)\). \(\quad \square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Yang, Z. & Zhu, H. The Insulated Conductivity Problem with p-Laplacian. Arch Rational Mech Anal 247, 95 (2023). https://doi.org/10.1007/s00205-023-01926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01926-0

Mathematics Subject Classification

Navigation