Skip to main content
Log in

Energy Estimates for the Tracefree Curvature of Willmore Surfaces and Applications

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove an \(\varepsilon \)-regularity result for the tracefree curvature of a Willmore surface with bounded second fundamental form. For such a surface, we obtain a pointwise control of the tracefree second fundamental form from a small control of its \(L^2\)-norm. Several applications are investigated. Notably, we derive a gap statement for surfaces of the aforementioned type. We further apply our results to deduce regularity results for conformal minimal spacelike immersions into the de Sitter space \({\mathbb {S}}^{4,1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The weak-\(L^2\) Marcinkiewicz space \(L^{2,\infty }(B_1(0))\) is defined as those functions f which satisfy \(\,\sup _{\alpha >0}\alpha ^2\Big |\big \{x\in B_1(0)\,;\,|f(x)|\ge \alpha \big \}\Big |<\infty \). In dimension two, the prototype element of \(L^{2,\infty }\) is \(|x|^{-1}\,\). The space \(L^{2,\infty }\) is also a Lorentz space, and in particular is a space of interpolation between Lebesgue spaces. See [12] for details.

  2. The argument is as follows: between the round sphere and the compact piece, there is a small geodesic circle. Blowing up the surface around this geodesic gives rise to a non compact Willmore surface with at least two ends which cannot be umbilic. Hence all the involved concentration points develop only one simple bubble which is a round sphere and \({\Phi }_\infty \) must be constant.

  3. In fact there is only one concentration point since the argument of Theorem 0.2 of [17] applies between two bubbles.

References

  1. Alday, L.F., Maldacena, J.: Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space. J. High Energy Phys. 2009(11), 082, 2009

    Article  MathSciNet  Google Scholar 

  2. Bernard, Y., Rivière, T.: Energy quantization for Willmore surfaces and applications. Ann. Math. (2) 180(1), 87–136, 2014

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernard, Y., Rivière, T.: Uniform regularity results for critical and subcritical surface energies. Calc. Var. Partial Differ. Equ. 58(1), 1–39, 2019

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard, Y., Wheeler, G., Wheeler, V.: Analysis of the inhomogeneous Willmore equation. arXiv:1811.08546, to appear in Ann. Inst. H. Poincaré (2021), 2018

  5. Blaschke, W.: Vorlesungen über Integralgeometrie, vol. 3te Aufl. Deutscher Verlag der Wissenschaften, Berlin (1955)

  6. Bourgain, J., Brezis, H.: On the equation \({\rm div}\, Y=f\) and application to control of phases. J. Am. Math. Soc. 16(2), 393–426, 2003

    Article  MATH  Google Scholar 

  7. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23–53, 1984

    MathSciNet  MATH  Google Scholar 

  8. De Lellis, Camillo, Müller, Stefan: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69(1), 75–110, 2005

    MathSciNet  MATH  Google Scholar 

  9. De Lellis, Camillo, Müller, Stefan: A \(C^0\) estimate for nearly umbilical surfaces. Calc. Var. Partial Differ. Equ. 26(3), 283–296, 2006

    Article  MATH  Google Scholar 

  10. Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.): Quantum Fields and Strings: A Course for Mathematicians. vol. 1, 2. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997

  11. Eschenburg, J.-H.: Willmore surfaces and Moebius geometry, 1988

  12. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, Volume 150 of Cambridge Tracts in Mathematics, 2nd edn. Cambridge University Press, Cambridge (2002) Translated from the 1996 French original, With a foreword by James Eells

  13. Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72, 1957

    Article  MathSciNet  MATH  Google Scholar 

  14. Jost, J.: Geometry and physics. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

  15. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441, 2001

    MathSciNet  MATH  Google Scholar 

  16. Lamm, T., Nguyen, H.T.: Branched Willmore spheres. J. Reine Angew. Math. 701, 169–194, 2015

    MathSciNet  MATH  Google Scholar 

  17. Laurain, P., Rivière, T.: Energy quantization of Willmore surfaces at the boundary of the moduli space. Duke Math. J. 167(11), 2073–2124, 2018

    Article  MathSciNet  MATH  Google Scholar 

  18. Laurain, P., Rivière, T.: Optimal estimate for the gradient of Green’s function on degenerating surfaces and applications. Commun. Anal. Geom. 26(4), 887–913, 2018

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Peter, Yau, Shing Tung: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291, 1982

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Maldacena, J.: The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2(2), 231–252, 1998

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Marque, N.: Moduli spaces of Willmore immersions, 2019

  22. Marque, N.: Conformal gauss map geometry and application to Willmore surfaces in model spaces. Potential Anal., 2020

  23. Marque, N.: Minimal bubbling for Willmore surfaces. Int. Math. Res. Not. 04, rnaa079, 2020

    Google Scholar 

  24. Marque, Nicolas: An \(\varepsilon \)-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling. Ann. Inst. Fourier (Grenoble) 72(2), 639–684, 2022

    Article  MathSciNet  MATH  Google Scholar 

  25. McCoy, J., Wheeler, G.: A classification theorem for Helfrich surfaces. Math. Ann. 357(4), 1485–1508, 2013

    Article  MathSciNet  MATH  Google Scholar 

  26. Michelat, A., Rivière, T.: The classification of branched Willmore spheres in the 3-sphere and the 4-sphere. arXiv:1706.01405, 2017

  27. Müller, S., Šverák, V.: On surfaces of finite total curvature. J. Differ. Geom. 42(2), 229–258, 1995

    MathSciNet  MATH  Google Scholar 

  28. Nguyen, H.T.: Geometric rigidity for analytic estimates of Müller-Šverák. Math. Z. 272(3–4), 1059–1074, 2012

    Article  MathSciNet  MATH  Google Scholar 

  29. O’Neill, B.: Semi-Riemannian Geometry, Volume 103 of Pure and Applied Mathematics. Academic Press Inc., [Harcourt Brace Jovanovich, Publishers], New York (1983) With applications to relativity

  30. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Wheeler, G.: Gap phenomena for a class of fourth-order geometric differential operators on surfaces with boundary. Proc. Am. Math. Soc. 143(4), 1719–1737, 2015

    Article  MathSciNet  MATH  Google Scholar 

  32. White, B.: Complete surfaces of finite total curvature. J. Differ. Geom. 26(2), 315–326, 1987

    MathSciNet  MATH  Google Scholar 

  33. Willmore, T.J.: Riemannian Geometry. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993)

    MATH  Google Scholar 

  34. Zhu, M.: Regularity for harmonic maps into certain pseudo-Riemannian manifolds. J. Math. Pures Appl. (9) 99(1), 106–123, 2013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Parts of this work were completed while the second and third authors were guests at Monash University under the Robert Bartnik Fellowship funding program. This work was also partially supported by the ANR BLADE-JC ANR- 18-CE40-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Laurain.

Additional information

Communicated by S. Müller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Variational Bubbles are Conformally Minimal

In Theorem H of [26], the authors obtain as a byproduct that any branched sphere that appears as a bubble must be conformally minimal. The Proof of Theorem H in [26] is quite involved due to the general assumptions used by the authors. For the sake of completeness of the present paper, we give an elementary argument to obtain the same result.

Lemma 3.1

Let \({\Phi }_k :{\mathbb {D}}\rightarrow {\mathbb {R}}^3\) be a sequence of conformal Willmore immersions, \(a_k\in {\mathbb {D}}\) a sequence of points converging to some \(a_\infty \), \( \mu _k\) converging to 0, and \(T_k\) a sequence of conformal transformations of \({\mathbb {R}}^3\). Suppose that

$$\begin{aligned} \tilde{{\Phi }}_k:=T_k\circ {\Phi }_k(a_k+\mu _k \, \cdot ) \rightarrow \omega \hbox { on } {\mathbb {R}}^2\setminus {S}, \end{aligned}$$

where S is the finite set and \(\omega \) a branched Willmore sphere. Then \(\omega \) is conformally minimal.

Proof

Following Bryant’s work, in order to prove that a sphere is conformally minimal, it suffices to prove that its associated quartic form \(Q_\omega \) vanishes (see Theorem E in [7]). Let \(Q_{\tilde{{\Phi }}_k}\) be the quartic form associated with \({\Phi }_k\). Per Theorem B in [7], \(Q_{\tilde{{\Phi }}_k}\) is holomorphic. Let \(p\in R^2\) be a branch point. Our strong convergence hypothesis away from branch points guarantees that the quartic form \(Q_\omega \) is holomorphic around p, because \(Q_{\tilde{{\Phi }}_k}\) is bounded.  owing to the maximum principle. Hence \(Q_\omega \) may have at most one pole at infinity. Letting \(\tilde{Q}= Q_{\omega }\left( \frac{1}{z} \right) \), by Theorem 3.1 of [16], the order of the pole of \(\tilde{Q}\) at 0 is at most 2. One easily checks that \(\tilde{Q}(z)=O\left( \frac{1}{\vert z\vert ^8}\right) \), so that \(Q_\omega \equiv 0\) by Liouville’s Theorem, thereby concluding the proof. \(\square \)

1.2 Convenient Reformulation of the Gauss–Codazzi Equation

Recall that \(\nabla \vec {n}= -e^{-2\lambda } A \nabla \Phi \), that is,

$$\begin{aligned} -\vec {n}_x= & {} \left( H + \left( \frac{l-n}{2} \right) e^{-2\lambda } \right) \Phi _x + m e^{-2\lambda } \Phi _y \\{} & {} \text {and}\\ -\vec {n}_y= & {} m e^{-2\lambda } \Phi _x + \left( H - \left( \frac{l-n}{2} \right) e^{-2\lambda } \right) \Phi _y. \end{aligned}$$

Differentiating yields

$$\begin{aligned} - \vec {n}_{xy}= & {} \left( H_y+ \left( \frac{l-n}{2} \right) _y e^{-2\lambda } + \lambda _y H - \lambda _y \left( \frac{l-n}{2} \right) e^{-2\lambda } - \lambda _x m e^{-2\lambda } \right) \Phi _x \\{} & {} + \left( m_y e^{-2\lambda } - \lambda _y m e^{-2 \lambda } + \lambda _x \left( H + \left( \frac{l-n}{2} \right) \right) \right) \Phi _y + \left( \dots \right) \vec {n}\\{} & {} \text {and}\\ -\vec {n}_{yx}= & {} \left( m_x e^{-2\lambda } - \lambda _x m e^{-2\lambda } + \lambda _y \left( H - \left( \frac{l-n}{2} \right) e^{-2\lambda } \right) \right) \Phi _x \\{} & {} + \left( H_x - \left( \frac{l-n}{2} \right) _x e^{-2\lambda } + \lambda _x H + \lambda _x \left( \frac{l-n}{2} \right) - \lambda _y m e^{-2\lambda } \right) + \left( \dots \right) \vec {n}. \end{aligned}$$

Identifying \(\vec {n}_{xy}\) and \(\vec {n}_{yx}\), one finds that

$$\begin{aligned} e^{2\lambda } H_x= & {} \left( \frac{l-n}{2} \right) _x + m_y \nonumber \\{} & {} \text {and}\nonumber \\ e^{2\lambda } H_y= & {} - \left( \frac{l-n}{2} \right) _y + m_x. \end{aligned}$$
(54)

1.3 Brief Proof of Theorem 1.6

In order to contrast 1.5 from 1.6, we sketch a Proof of Theorem 1.6.

Proof

A weakly harmonic application u satisfies

$$\begin{aligned} \Delta u + \langle \nabla u , \nabla u \rangle _{4,1} u =0. \end{aligned}$$

Equivalently, the latter may be recast in the conservative form

$$\begin{aligned} \textrm{div}( \nabla u u^T - u \nabla u^T ) = 0. \end{aligned}$$

Accordingly, on \({\mathbb {D}}\), there exists a matrix B such that \(\nabla ^\perp B = \nabla u u^T - u \nabla u^T\). As a consequence, B satisfies \(\nabla B = u \nabla ^\perp u^T - \nabla ^\perp u u^T\) which implies

$$\begin{aligned} \Delta B = 2 \nabla u \nabla ^\perp u^T. \end{aligned}$$
(55)

On the other hand, if we denote by \(\varepsilon \) the signature matrix of \({\mathbb {R}}^{4,1}\), then for any two vectors ab, we have \(\langle a, b \rangle _{4,1}= a^T \varepsilon b\). Then

$$\begin{aligned} \nabla ^\perp B \varepsilon \nabla u= & {} \nabla u u^T \varepsilon \nabla u -u \nabla u^T \varepsilon \nabla u = \langle u, \nabla u \rangle _{4,1} \nabla u - \langle \nabla u , \nabla u \rangle _{4,1} u \\= & {} - \langle \nabla u , \nabla u \rangle _{4,1} u = \Delta u, \end{aligned}$$

since, given that \(u\in {\mathbb {S}}^{4,1}\), we have \(\langle u, \nabla u \rangle _{4,1}=0\). Combining this to (55) yields the system:

$$\begin{aligned} \Delta u= & {} \nabla ^\perp B \nabla (\varepsilon u ) \\ \Delta B= & {} 2 \nabla u \nabla ^\perp u^T. \end{aligned}$$

Provided that \(\left\| \nabla u \right\| _{L^2 } \le \varepsilon _0\), the statement (14) now follows from classical integration by compensation techniques, such as those presented in [12]. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, Y., Laurain, P. & Marque, N. Energy Estimates for the Tracefree Curvature of Willmore Surfaces and Applications. Arch Rational Mech Anal 247, 8 (2023). https://doi.org/10.1007/s00205-022-01839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-022-01839-4

Navigation