Skip to main content
Log in

Analysis aspects of Willmore surfaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A new formulation for the Euler–Lagrange equation of the Willmore functional for immersed surfaces in ℝm is given as a nonlinear elliptic equation in divergence form, with non-linearities comprising only Jacobians. Letting \(\vec{H}\) be the mean curvature vector of the surface, our new formulation reads \({\mathcal{L}}\vec{H}=0\), where \(\mathcal{L}\) is a well-defined locally invertible self-adjoint elliptic operator. Several consequences are studied. In particular, the long standing open problem asking for a meaning to the Willmore Euler–Lagrange equation for immersions having only L 2-bounded second fundamental form is now solved. The regularity of weak Willmore immersions with L 2-bounded second fundamental form is also established. Its proof relies on the discovery of conservation laws which are preserved under weak convergence. A weak compactness result for Willmore surfaces with energy less than 8π (the Li–Yau condition ensuring the surface is embedded) is proved, via a point removability result established for Wilmore surfaces in ℝm, thereby extending to arbitrary codimension the main result in [KS3]. Finally, from this point-removability result, the strong compactness of Willmore tori below the energy level 8π is proved both in dimension 3 (this had already been settled in [KS3]) and in dimension 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, Y., Rivière, T.: Palais Smale sequences of the Willmore functional. In preparation (2008)

  2. Blaschke, W.: Vorlesungen über Differential Geometrie III. Springer, Berlin (1929)

    Google Scholar 

  3. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23–53 (1984)

    MATH  Google Scholar 

  4. Chen, B.-Y.: Some conformal invariants of submanifolds and their applications. Boll. Unione Mat. Ital. (4) 10, 380–385 (1974)

    MATH  Google Scholar 

  5. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl., IX. Sér 72(3), 247–286 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  7. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MATH  Google Scholar 

  8. Hawking, S.W.: Gravitational radiation in an expanding universe. J. Math. Phys. 9, 598–604 (1968)

    Article  Google Scholar 

  9. Hélein, F.: Harmonic Maps, Conservation Laws, and Moving Frames. Camb. Tracts Math., vol. 150. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  10. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Nat.forsch. A C28, 693–703 (1973)

    Google Scholar 

  11. Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 1997(20), 1045–1058 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)

    MATH  Google Scholar 

  14. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002)

    MATH  Google Scholar 

  15. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. (2) 160(1), 315–357 (2004)

    Article  MATH  Google Scholar 

  16. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Montiel, S.: Willmore two-spheres in the four-sphere. Trans. Am. Math. Soc. 352(10), 4469–4486 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Müller, S., Sverák, V.: On surfaces of finite total curvature. J. Differ. Geom. 42(2), 229–258 (1995)

    MATH  Google Scholar 

  19. Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intell. 9(2), 38–43 (1987)

    MATH  MathSciNet  Google Scholar 

  20. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2006)

    Article  Google Scholar 

  21. Rusu, R.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7, 229–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Simon, L.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

    MATH  Google Scholar 

  23. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)

    MATH  Google Scholar 

  24. Simonett, G.: The Willmore flow near spheres. Differ. Integral Equ. 14(8), 1005–1014 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Tartar, L.: Remarks on oscillations and Stokes’ equation. In: Macroscopic Modelling of Turbulent Flows (Nice, 1984). Lect. Notes Phys., vol. 230, pp. 24–31. Springer, Berlin (1985)

    Chapter  Google Scholar 

  26. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1(3), 479–500 (1998)

    MATH  MathSciNet  Google Scholar 

  27. Thomsen, G.: Über konforme Geometrie, I. Grundlagen der konformen Flächentheorie. Abh. Math. Semin. Univ. Hamburg, pp. 31–56 (1923)

  28. Toro, T.: Surfaces with generalized second fundamental form in L2 are Lipschitz manifolds. J. Differ. Geom. 39, 65–101 (1994)

    MATH  MathSciNet  Google Scholar 

  29. Toro, T.: Geometric conditions and existence of bilipschitz parametrisations. Duke Math. J. 77(1), 193–227 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Weiner, J.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27(1), 19–35 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wente, H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  32. White, J.H.: A global invariant of conformal mappings in space. Proc. Am. Math. Soc. 38, 162–164 (1973)

    Article  MATH  Google Scholar 

  33. Willmore, T.J.: Note on embedded surfaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 11B, 493–496 (1965)

    MathSciNet  Google Scholar 

  34. Willmore, T.J.: Riemannian Geometry. Oxford University Press, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Rivière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, T. Analysis aspects of Willmore surfaces. Invent. math. 174, 1–45 (2008). https://doi.org/10.1007/s00222-008-0129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0129-7

Keywords

Navigation