Skip to main content
Log in

Partial Differential Equations with Quadratic Nonlinearities Viewed as Matrix-Valued Optimal Ballistic Transport Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study a rather general class of optimal “ballistic” transport problems for matrix-valued measures. These problems naturally arise, in the spirit of Brenier (Commun Math Phys 364(2):579–605, 2018), from a certain dual formulation of nonlinear evolutionary equations with a particular quadratic structure reminiscent both of the incompressible Euler equation and of the quadratic Hamilton–Jacobi equation. The examples include the ideal incompressible MHD, the template matching equation, the multidimensional Camassa–Holm (also known as the \(H({{\,\mathrm{div}\,}})\) geodesic equation), EPDiff, Euler-\(\alpha \), KdV and Zakharov–Kuznetsov equations, the equations of motion for the incompressible isotropic elastic fluid and for the damping-free Maxwell’s fluid. We prove the existence of the solutions to the optimal “ballistic” transport problems. For formally conservative problems, such as the above mentioned examples, a solution to the dual problem determines a “time-noisy” version of the solution to the original problem, and the latter one may be retrieved by time-averaging. This yields the existence of a new type of absolutely continuous in time generalized solutions to the initial-value problems for the above mentioned PDE. We also establish a sharp upper bound on the optimal value of the dual problem, and explore the weak–strong uniqueness issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This definition of subsolutions does not take into account the corresponding wave cone that plays a significant role in the theory of convex integration, cf. [20, 21]. However, in the case of the incompressible Euler equation this definition is known to be equivalent [19] to the conventional definition of subsolutions. When the wave cone is not very large, cf. [26, 68], there is a discrepancy between the two definitions.

  2. In the case \(n=1\) this definition would imply that \(v=0\) almost everywhere in the set \([I + 2B=0]\). The generalized solution to the inviscid Burgers equation provided by [11, Proposition 4.1] coincides with (4.8) in the support of the measure \(I\mu \otimes \hbox {d}t+2B\). However, generally speaking, it does not vanish outside of the support. This is easy to check by considering the initial datum \(v_0(x)=sign \left( x-\frac{1}{2}\right) ,\ x\in [0,1]\simeq {\mathbb {T}}^1\) for which the solution of [11, Proposition 4.1] can be computed by hand.

References

  1. Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. l’institut Fourier 16(1), 319–361, 1966

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I., Khesin, B.A.: Topological methods in hydrodynamics. Applied Mathematical Sciences, vol. 125, Springer, New York, 1998

  3. Ay, N., Schwachhöfer, L.: Information Geometry, Springer, Berlin, 2017

  4. Bardos, C., Sulem, C., Sulem, P.-L.: Longtime dynamics of a conductive fluid in the presence of a strong magnetic field. Trans. Am. Math. Soc. 305(1), 175–191, 1988

    Article  MathSciNet  MATH  Google Scholar 

  5. Barton, A., Ghoussoub, N.: Dynamic and stochastic propagation of the Brenier optimal mass transport. Eur. J. Appl. Math. 30(6), 1264–1299, 2019

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer, M., Harms, P., Michor, P.W.: Almost local metrics on shape space of hypersurfaces in \(n\)-space. SIAM J. Imaging Sci. 5(1), 244–310, 2012

    Article  MathSciNet  MATH  Google Scholar 

  7. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393, 2000

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernard, P., Buffoni, B.: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9(1), 85–121, 2007

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenier, Y.: The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2(2), 225–255, 1989

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417, 1991

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenier, Y.: The initial value problem for the Euler equations of incompressible fluids viewed as a concave maximization problem. Commun. Math. Phys. 364(2), 579–605, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Brenier, Y.: Examples of Hidden Convexity in Nonlinear PDES, 2020

  13. Brenier, Y., De Lellis, C., Székelyhidi, L., Jr.: Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305, 351–361, 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Brenier, Y., Vorotnikov, D.: On optimal transport of matrix-valued measures. SIAM J. Math. Anal. 52, 2849–2873, 2020

    Article  MathSciNet  MATH  Google Scholar 

  15. Bronzi, A.C., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Wild solutions for 2d incompressible ideal flow with passive tracer. Commun. Math. Sci. 13(5), 1333–1343, 2015

    Article  MathSciNet  MATH  Google Scholar 

  16. Cai, Y., Lei, Z.: Global well-posedness of the incompressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 228(3), 969–993, 2018

    Article  MathSciNet  MATH  Google Scholar 

  17. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.-X.: An interpolating distance between optimal transport and Fisher-Rao metrics. Found. Comput. Math. 18(1), 1–44, 2018

    Article  MathSciNet  MATH  Google Scholar 

  18. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on \(\mathbb{R}\) and \(\mathbb{T}\). J. Am. Math. Soc. 16(3), 705–749, 2003

    Article  MathSciNet  MATH  Google Scholar 

  19. Daneri, S., Székelyhidi, L., Jr.: Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514, 2017

    Article  MathSciNet  MATH  Google Scholar 

  20. De Lellis, C., Székelyhidi, L., Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260, 2010

    Article  MathSciNet  MATH  Google Scholar 

  21. de Lellis, C., Székelyhidi, L., Jr.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436, 2009

    Article  MathSciNet  MATH  Google Scholar 

  22. DiPerna, R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188, 1979

    Article  MathSciNet  MATH  Google Scholar 

  23. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108, 667–689, 1987

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163, 1970

    Article  MathSciNet  MATH  Google Scholar 

  25. Elgindi, T.M., Rousset, F.: Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68(11), 2005–2021, 2015

    Article  MathSciNet  MATH  Google Scholar 

  26. Faraco, D., Lindberg, S.: Magnetic Helicity and Subsolutions in Ideal MHD, 2018. arXiv e-prints arXiv:1801.04896

  27. Faraco, D., Lindberg, S., Székelyhidi, L., Jr.: Bounded solutions of ideal MHD with compact support in space-time. Arch. Ration. Mech. Anal. 239, 51–93, 2021

    Article  MathSciNet  MATH  Google Scholar 

  28. Gallouët, T., Vialard, F.-X.: The Camassa–Holm equation as an incompressible Euler equation: a geometric point of view. J. Differ. Equ. 264(7), 4199–4234, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gallouët, T.O., Natale, A., Vialard, F.-X.: Generalized compressible flows and solutions of the \({H}({{\rm div}})\) geodesic problem. Arch. Ration. Mech. Anal. 235(3), 1707–1762, 2020

    Article  MathSciNet  MATH  Google Scholar 

  30. Gleason, A.M.: The definition of a quadratic form. Am. Math. Mon. 73(10), 1049–1056, 1966

    Article  MathSciNet  MATH  Google Scholar 

  31. Han-Kwan, D.: From Vlasov–Poisson to Korteweg-de Vries and Zakharov–Kuznetsov. Commun. Math. Phys. 324(3), 961–993, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Herr, S., Kinoshita, S.: Subcritical Well-posedness Results for the Zakharov–Kuznetsov Equation in Dimension Three and Higher, 2020. arXiv e-prints arXiv:2001.09047

  33. Hirani, A.N., Marsden, J.E., Arvo, J.: Averaged template matching equations. International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, pp. 528–543, 2001

  34. Holm, D.D., Marsden, J.E.: Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the epdiff equation. The Breadth of Symplectic and Poisson Geometry, Springer, pp. 203–235, 2005

  35. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137(1), 1–81, 1998

    Article  MathSciNet  MATH  Google Scholar 

  36. Holm, D.D., Marsden, J.E., Ratiu, T.S.: Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80(19), 4173–4176, 1998

    Article  ADS  Google Scholar 

  37. Holm, D.D., Schmah, T., Stoica, C.: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford University Press, Oxford, 2009

  38. Holm, D.D., Staley, M.F.: Interaction Dynamics of Singular Wave Fronts, 2013. arXiv preprint arXiv:1301.1460

  39. Hu, X., Lin, F.: Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data. Commun. Pure Appl. Math. 69(2), 372–404, 2016

    Article  MathSciNet  MATH  Google Scholar 

  40. Khesin, B., Lenells, J., Misiołek, G., Preston, S.C.: Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal. 23(1), 334–366, 2013

    Article  MathSciNet  MATH  Google Scholar 

  41. Khesin, B., Wendt, R.: The Geometry of Infinite-Dimensional Groups, Springer, Berlin, 2008

  42. Kinoshita, S.: Global well-posedness for the cauchy problem of the Zakharov–Kuznetsov equation in 2d. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 38, 451–505, 2021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kinoshita, S., Schippa, R.: Loomis–Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov–Kuznetsov equation. J. Funct. Anal. 280(6), 108904, 2021

    Article  MathSciNet  MATH  Google Scholar 

  44. Kondratyev, S., Monsaingeon, L., Vorotnikov, D.: A new optimal transport distance on the space of finite Radon measures. Adv. Differ. Equ. 21(11–12), 1117–1164, 2016

    MathSciNet  MATH  Google Scholar 

  45. Kruse, H.-P., Scheurle, J., Du, W.: A two-dimensional version of the Camassa–Holm equation. Symmetry and Perturbation Theory: SPT 2001, World Scientific, pp. 120–127, 2001

  46. Lannes, D., Linares, F., Saut, J.-C.: The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation. Studies in Phase Space Analysis with Applications to PDEs, Springer, pp. 181–213, 2013

  47. Larson, R.G.: Constitutive Equations for Polymer Melts and Solutions, Butterworth-Heinemann, Oxford, 1988

  48. Larsson, S., Matsuo, T., Modin, K., Molteni, M.: Discrete Variational Derivative Methods for the epdiff Equation, 2016. arXiv preprint arXiv:1604.06224

  49. Lei, Z.: Global well-posedness of incompressible elastodynamics in two dimensions. Commun. Pure Appl. Math. 69(11), 2072–2106, 2016

    Article  MathSciNet  MATH  Google Scholar 

  50. Lei, Z., Sideris, T., Zhou, Y.: Almost global existence for 2-d incompressible isotropic elastodynamics. Trans. Am. Math. Soc. 367(11), 8175–8197, 2015

    Article  MathSciNet  MATH  Google Scholar 

  51. Lei, Z., Wang, F.: Uniform bound of the highest energy for the three dimensional incompressible elastodynamics. Arch. Ration. Mech. Anal. 216(2), 593–622, 2015

    Article  MathSciNet  MATH  Google Scholar 

  52. Liero, M., Mielke, A., Savaré, G.: Optimal transport in competition with reaction: the Hellinger–Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48(4), 2869–2911, 2016

    Article  MathSciNet  MATH  Google Scholar 

  53. Lin, F.-H., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58(11), 1437–1471, 2005

    Article  MathSciNet  MATH  Google Scholar 

  54. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Oxford Lecture Series in Mathematics and its Applications, vol. 1, The Clarendon Press, Oxford University Press, New York, 1996

  55. Marsden, J.E., Ratiu, T.S., Shkoller, S.: The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. 10(3), 582–599, 2000

    Article  MathSciNet  MATH  Google Scholar 

  56. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245, 2005

    MathSciNet  MATH  Google Scholar 

  57. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1–48, 2006

    Article  MathSciNet  MATH  Google Scholar 

  58. Modin, K.: Generalized Hunter–Saxton equations, optimal information transport, and factorization of diffeomorphisms. J. Geom. Anal. 25(2), 1306–1334, 2015

    Article  MathSciNet  MATH  Google Scholar 

  59. Mumford, D., Michor, P.W.: On Euler’s equation and ‘epdiff’. J. Geom. Mech. 5(3), 319–344, 2013

    Article  MathSciNet  MATH  Google Scholar 

  60. Natale, A., Vialard, F.-X.: Embedding Camassa–Holm equations in incompressible Euler. J. Geom. Mech. 11(2), 205, 2019

    Article  MathSciNet  MATH  Google Scholar 

  61. Oldroyd, J.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 200(1063), 523–541, 1950

    ADS  MathSciNet  MATH  Google Scholar 

  62. Rajeev, S.G.: Fluid Mechanics: A Geometrical Point of View, Oxford University Press, Oxford, 2018

  63. Santambrogio, F.: Optimal Transport for Applied Mathematicians, Birkhäuser/Springer, Berlin, 2015

  64. Shi, W., Vorotnikov, D.: Uniformly compressing mean curvature flow. J. Geom. Anal. 29(4), 3055–3097, 2019

    Article  MathSciNet  MATH  Google Scholar 

  65. Shkoller, S.: Geometry and curvature of diffeomorphism groups with \(H^1\) metric and mean hydrodynamics. J. Funct. Anal. 160(1), 337–365, 1998

    Article  MathSciNet  MATH  Google Scholar 

  66. Sideris, T.C., Thomases, B.: Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit. Commun. Pure Appl. Math. 58(6), 750–788, 2005

    Article  MathSciNet  MATH  Google Scholar 

  67. Sideris, T.C., Thomases, B.: Global existence for three-dimensional incompressible isotropic elastodynamics. Commun. Pure Appl. Math. 60(12), 1707–1730, 2007

    Article  MathSciNet  MATH  Google Scholar 

  68. Székelyhidi, L., Jr.: Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. 45, 491–509, 2012

    Article  MathSciNet  MATH  Google Scholar 

  69. Székelyhidi, L., Wiedemann, E.: Young measures generated by ideal incompressible fluid flows. Arch. Ration. Mech. Anal. 206(1), 333–366, 2012

    Article  MathSciNet  MATH  Google Scholar 

  70. Temam, R.: Navier–Stokes Equations, Studies in Mathematics and Its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1979

  71. Villani, C.: Topics in Optimal Transportation, American Mathematical Soc, Providence, 2003

  72. Villani, C.: Optimal Transport: Old and New, Springer, Berlin, 2008

  73. Vorotnikov, D.: Global generalized solutions for Maxwell-alpha and Euler-alpha equations. Nonlinearity 25(2), 309–327, 2012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Annales de l’Institut Henri Poincare C Nonlinear Anal. 28(5), 727–730, 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Wu, J.: Analytic results related to magneto-hydrodynamic turbulence. Physica D 136(3–4), 353–372, 2000

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Xu, L.: On the ideal magnetohydrodynamics in three-dimensional thin domains: well-posedness and asymptotics. Arch. Ration. Mech. Anal. 236(1), 1–70, 2020

    Article  MathSciNet  MATH  Google Scholar 

  77. Younes, L.: Shapes and Diffeomorphisms, Springer, Berlin, 2010

  78. Zakharov, V., Kuznetsov, E.: On three dimensional solitons. Zhurnal Eksp. Teoret. Fiz 66, 594–597, 1974

    ADS  Google Scholar 

  79. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274(7), 2039–2060, 2018

    Article  MathSciNet  MATH  Google Scholar 

  80. Zvyagin, V.G., Vorotnikov, D.A.: Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics. De Gruyter Series in Nonlinear Analysis and Applications, vol. 12, Walter de Gruyter & Co., Berlin, 2008

Download references

Acknowledgements

The author wishes to thank the anonymous referees for many valuable comments, which led to important improvements of the manuscript. The author is very grateful to Yann Brenier and Wenhui Shi for inspiring discussions on the subject. The research was partially supported by the Portuguese Government through FCT/MCTES and by the ERDF through PT2020 (projects UID/MAT/00324/2020,

PTDC/MAT-PUR/28686/2017 and TUBITAK/0005/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Vorotnikov.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorotnikov, D. Partial Differential Equations with Quadratic Nonlinearities Viewed as Matrix-Valued Optimal Ballistic Transport Problems. Arch Rational Mech Anal 243, 1653–1698 (2022). https://doi.org/10.1007/s00205-022-01754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01754-8

Navigation