Skip to main content
Log in

From Vlasov–Poisson to Korteweg–de Vries and Zakharov–Kuznetsov

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a long wave scaling for the Vlasov–Poisson equation and derive, in the cold ions limit, the Korteweg–de Vries equation (in 1D) and the Zakharov–Kuznetsov equation (in higher dimensions, in the presence of an external magnetic field). The proofs are based on the relative entropy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allemand, T.: The incompressible Euler limit of the Boltzmann equation for a gas of fermions. http://arxiv.org/abs/1006.4048v4 [math.Ap], 2011

  2. Alvarez-Samaniego B., Lannes D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171(3), 485–541 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Arsen’ev, A.A.: Existence in the large of a weak solution of Vlasov’s system of equations. Ž. Vyčisl. Mat. i Mat. Fiz, 15, 136–147, 276 (1975)

    Google Scholar 

  4. Ben Youssef W., Colin T.: Rigorous derivation of Korteweg–de Vries-type systems from a general class of nonlinear hyperbolic systems. M2AN Math. Model. Numer. Anal. 34(4), 873–911 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Youssef W., Lannes D.: The long wave limit for a general class of 2D quasilinear hyperbolic problems. Commun. Partial Differ. Equ. 27(5–6), 979–1020 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Béthuel F., Gravejat P., Saut J.-C., Smets D.: On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation. I. Int. Math. Res. Not. IMRN 2009(14), 2700–2748 (2009)

    MATH  Google Scholar 

  7. Béthuel F., Gravejat P., Saut J.-C., Smets D.: On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation II. Commun. Partial Differ. Equ. 35(1), 113–164 (2010)

    Article  MATH  Google Scholar 

  8. Bona J.L., Colin T., Lannes D.: Long wave approximations for water waves. Arch. Rational Mech. Anal. 178(3), 373–410 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bouchut F.: Global weak solution of the Vlasov–Poisson system for small electrons mass. Commun. Partial Differ. Equ. 16, 1337–1365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Applied Mathematics. Paris: Gauthier-Villars, 2000

  11. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain J.: On the Cauchy problem for the Kadomtsev–Petviashvili equation. Geom. Funct. Anal. 3(4), 315–341 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brenier Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25, 737–754 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiron D., Rousset F.: The KdV/KP-I limit of the nonlinear Schrödinger equation. SIAM J. Math. Anal. 42(1), 64–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cordier S., Peng Y.J.: Système Euler–Poisson non linéaire. Existence globale de solutions faibles entropiques. M2AN 32(1), 1–23 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Craig W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duchêne V.: Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation. ESAIM Math. Model. Numer. Anal. 46(1), 145–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duchêne, V.: Decoupled and unidirectional asymptotic models for the propagation of internal waves. http://arxiv.org/abs/1208.6394v2 [math.Ap], 2012

  19. Faminskii A. V.: Well-posed initial-boundary value problems for the Zakharov–Kuznetsov equation. Electron. J. Differ. Equ. 127, 1–23 (2008)

    Google Scholar 

  20. Golse F., Saint-Raymond L.: The Vlasov–Poisson system with strong magnetic field in quasineutral regime. Math. Models Meth. Appl. Sci. 13(5), 661–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grenier, E.: Limite quasineutre en dimension 1. In: Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Nantes: Univ. Nantes, 1999, pp. Exp. No. II, 8

  22. Guo, Y., Pu, X.: KdV limit of the Euler–Poisson system. http://arxiv.org/abs/1202.1830v2 [math.Ap], 2012

  23. Guo Y., Strauss W.A.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48(8), 861–894 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo Y., Strauss W.A.: Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincaré Anal. Non Linéaire 12(3), 339–352 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Guo Y., Strauss W.A.: Unstable BGK solitary waves and collisionless shocks. Commun. Math. Phys. 195(2), 267–293 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Han-Kwan D.: Quasineutral limit of the Vlasov–Poisson system with massless electrons. Commun. Partial Differ. Equ. 36(8), 1385–1425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haragus M., Nicholls D.P., Sattinger D.H.: Solitary wave interactions of the Euler–Poisson equations. J. Math. Fluid Mech. 5(1), 92–118 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Laedke, E.W., Spatschek, K.H.: Growth rates of bending KdV solitons. J. Plasma Phys. 28(03) (1982)

  29. Lannes, D., Linares, F., Saut, J.C.: The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation. http://arxiv.org/abs/1205.5080v1 [math.Ap], 2012

  30. Lin Z.: Instability of periodic BGK waves. Math. Res. Lett. 8(4), 521–534 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin Z.: Nonlinear instability of periodic BGK waves for Vlasov–Poisson system. Commun. Pure Appl. Math. 58(4), 505–528 (2005)

    Article  MATH  Google Scholar 

  32. Lin Z., Zeng C.: Small BGK waves and nonlinear Landau damping. Commun. Math. Phys. 306(2), 291–331 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Lin, Z., Zeng, C.: Small BGK waves and nonlinear Landau damping (higher dimensions). http://arxiv.org/abs/1106.4368v1 [math.Ap], 2011

  34. Linares F., Pastor A.: Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation. J. Funct. Anal. 260(4), 1060–1085 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Linares F., Saut J.-C.: The Cauchy problem for the 3D Zakharov–Kuznetsov equation. Discret. Contin. Dyn. Syst. 24(2), 547–565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Masmoudi N.: From Vlasov–Poisson system to the incompressible Euler system. Commun. Partial Differ. Equ. 26(9-10), 1913–1928 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mouhot C., Villani C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pu, X.: Dispersive limit of the Euler–Poisson system in higher dimensions. http://arxiv.org/abs/1204.5435vL [math-ph], 2012

  39. Ribaud F., Vento S.: Well-Posedness Results for the Three-Dimensional Zakharov–Kuznetsov Equation. SIAM J. Math. Anal. 44(4), 2289–2304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Saint-Raymond L.: Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Rational Mech. Anal. 166(1), 47–80 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation. Lecture Notes in Mathematics. Vol. 1971. Berlin: Springer-Verlag, 2009

  42. Saint-Raymond L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 705–744 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Schneider G., Wayne C.E.: The long-wave limit for the water wave problem. I. The case of zero surface tension. Commun. Pure Appl. Math. 53(12), 1475–1535 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yau H.T.: Relative entropy and hydrodynamics of Ginzburg–Landau. Lett. Math. Phys. 22(1), 63–80 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Zakharov V.E., Kuztnetsov E.A.: On three dimensional solitons. Sov. Phys. JETP 39, 285–286 (1974)

    ADS  Google Scholar 

  46. Zheng Y., Majda A.: Existence of global weak solutions to one-component Vlasov–Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data. Commun. Pure Appl. Math. 47(10), 1365–1401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Han-Kwan.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han-Kwan, D. From Vlasov–Poisson to Korteweg–de Vries and Zakharov–Kuznetsov. Commun. Math. Phys. 324, 961–993 (2013). https://doi.org/10.1007/s00220-013-1825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1825-8

Keywords

Navigation