Skip to main content
Log in

Young Measures Generated by Ideal Incompressible Fluid Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In their seminal paper, DiPerna and Majda (Commun Math Phys 108(4):667–689, 1987) introduced the notion of a measure-valued solution for the incompressible Euler equations in order to capture complex phenomena present in limits of approximate solutions, such as persistence of oscillation and development of concentrations. Furthermore, they gave several explicit examples exhibiting such phenomena. In this paper we show that any measure-valued solution can be generated by a sequence of exact weak solutions. In particular this gives rise to a very large, arguably too large, set of weak solutions of the incompressible Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.J., Bouchitté G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4(1), 129–147 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Ball, J.M.: A Version of the Fundamental Theorem for Young Measures. PDEs and Continuum Models of Phase Transitions (Nice, 1988). Lecture Notes in Physics, Vol. 344. Springer, Berlin, 207–215, 1989

  3. Bauer, H.: Measure and integration theory. de Gruyter Studies in Mathematics, Vol. 26. Walter de Gruyter, Berlin, 2001. Translated from the German by Robert B. Burckel

  4. Brenier Y.: The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2(2), 225–255 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenier Y.: Generalized solutions and hydrostatic approximation of the Euler equations. Phys. D 237(14-17), 1982–1988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenier Y., De Lellis C., Székelyhidi L. Jr.: Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305(2), 351–361 (2011)

    Article  ADS  MATH  Google Scholar 

  7. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn, Vol. 325. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, 2010

  8. De Lellis C., Székelyhidi L. Jr.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Article  MATH  Google Scholar 

  9. De Lellis C., Székelyhidi L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Rational Mech. Anal. 195(1), 225–260 (2010)

    Article  ADS  MATH  Google Scholar 

  10. DiPerna R.J.: Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88(3), 223–270 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Fonseca I., Kružík M.: Oscillations and concentrations generated by \({\mathcal{A}}\) -free mappings and weak lower semicontinuity of integral functionals. ESAIM Control Optim. Calc. Var. 16(2), 472–502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fonseca I., Müller S.: \({\mathcal{A}}\) -quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fonseca I., Müller S., Pedregal P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29(3), 736–756 (1998) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hungerbühler N.: A refinement of Ball’s theorem on Young measures. New York J. Math. 3, 48–53 (1997) (electronic)

    MathSciNet  Google Scholar 

  16. Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115(4), 329–365 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kristensen J., Rindler F.: Characterization of generalized gradient Young measures generated by sequences in W 1,1 and BV. Arch. Rational Mech. Anal. 197(2), 539–598 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kružík M., Roubíček T.: Explicit characterization of L p-Young measures. J. Math. Anal. Appl. 198(3), 830–843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. 1. Oxford Lecture Series in Mathematics and its Applications, Vol. 3. Incompressible Models. The Clarendon Press/Oxford University Press, New York, 1996

  20. Müller, S.: Variational Models for Microstructure and Phase Transitions. Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, Vol. 1713. Springer, Berlin, 85–210, 1999

  21. Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shnirelman A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shnirelman A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210(3), 541–603 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Wiedemann E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 727–730 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Young L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III 30, 212–234 (1937)

    MATH  Google Scholar 

  26. Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. Foreword by Wendell H. Fleming. W.B. Saunders Co., Philadelphia, 1969

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Székelyhidi Jr..

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Székelyhidi, L., Wiedemann, E. Young Measures Generated by Ideal Incompressible Fluid Flows. Arch Rational Mech Anal 206, 333–366 (2012). https://doi.org/10.1007/s00205-012-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0540-5

Keywords

Navigation